Искусственный интеллект когда был создан

0
13

Искусственный интеллект

История взлетов и падений

Ученые также прибегают к этим методам для определения функций биологических макромолекул, в частности белков и геномов, исходя из последовательности их компонентов – аминокислот для белков и оснований для геномов. В целом, во всех науках наблюдается серьезный эпистемологический разрыв, обусловленный качественным отличием экспериментов in silico – получивших такое название потому, что выполняются на основе больших данных с помощью мощных процессоров с кремниевыми чипами – от экспериментов in vivo (на живой ткани) и особенно in vitro (в стеклянных пробирках и чашках Петри).

Тогда же, в конце 1940-х годов, была впервые выдвинута идея машинного обучения. Согласно им, необходимо сделать программу, которая обладает базовым набором знаний и возможностью усваивать информацию, что позволит делать только «оболочку», которая будет самостоятельно достраивать себя до полноценного ИИ [1] .

С 2010 года мощность компьютеров позволяет сочетать так называемые большие данные (Big Data) с методами глубокого обучения (Deep Learning), которые основываются на использовании искусственных нейронных сетей. Весьма успешное применение во многих областях (распознавание речи и изображений, понимание естественного языка, беспилотный автомобиль и т.д.) позволяет говорить о возрождении ИИ.

Главное отличие искусственного интеллекта от других программ в отсутствии чётко заданного алгоритма решении задачи [3] . Согласно одной из распространённых версий, есть необходимый набор свойств для программы, чтобы считаться искусственным интеллектом. Исследователи уточняют, что список может быть неполным, так как какие-то из свойств интеллекта ещё не открыты или достаточно не изучены. Список выглядит так [4] :

Для Джона Мак-Карти и Марвина Мински, как и для прочих организаторов летнего семинара в Дартмут-колледже, ИИ изначально представлял собой область науки, занимающейся компьютерным моделированием различных способностей интеллекта, идет ли речь об интеллекте человеческом, животном, растительном, социальном или филогенетическом. В основе этой научной дисциплины лежит предположение о том, что все когнитивные функции, как то обучение, мышление, расчет, восприятие, память, даже научное открытие или художественное творчество, могут быть описаны с точностью, дающей возможность запрограммировать компьютер на их воспроизведение. На протяжении более чем шестидесяти лет существования ИИ не появилось ничего, что позволило бы неоспоримо доказать либо опровергнуть гипотезу, которая продолжает оставаться открытой и побуждает ученых к новым изобретениям.

Несмотря на то, что в самой идее искусственного интеллекта исследователи ориентируются на интеллект человека, симуляция оного на компьютере — не есть цель большей части проектов. Используемый для оценки человеческого интеллекта коэффициент (IQ) не применим для оценки машинных систем, по причине того, что он завязан на интеллектуальное развитие ребёнка и если на взрослых людей эту шкалу можно экстраполировать, то высокие результаты искусственного интеллекта в тесте на IQ не будут означать высокого интеллекта системы. При этом, некоторые из задач, используемых в этих тестах всё же помогают изучать эффективность конкретного искусственного интеллекта. Также, в то время как интеллект всех людей основывается на примерно одинаковых механизмах и развивается приблизительно по одному пути, в машинном интеллекте дело может обстоять с точностью до наоборот: при наличии превосходящих человеческие возможности вычислительных мощностей он основывается на тех принципах и цепочках, которые заложены в него разработчиком, а потому в каждой системе могут, с одной стороны, присутствовать интеллектуальные функции, развиваемые человеком только с подросткового возраста, а с другой — отсутствовать какие-то механизмы, присущие маленьким детям. Осложняется это тем, что природа человеческого интеллекта до сих пор изучена не до конца [1] [2] .

В 1930-х годах британский и австрийский математики Алан Тьюринг и Курт Гёдель, а также другие математики пришли к выводу, что не существует универсального алгоритма для решения любых задач в некоторых важных математических областях. Существуют задачи, которые не решаются путём составления алгоритма, но доступны к решению человеком, так что был сделан вывод, что компьютеры по своей природе не могут делать то, что делают люди [1] .

ЧИТАТЬ ТАКЖЕ:  Использование экспертных систем как систем искусственного интеллекта

Первые попытки теоретического проектирования мыслящих машин были предприняты после Второй Мировой войны сразу несколькими исследователями независимо друг от друга. В 1947 году Алан Тьюринг прочитал первую лекцию об искусственном интеллекте, в которой, вероятнее всего, первым постулировал, что построение оного будет с большей вероятностью заключаться в написании компьютерной программы, чем в проектировании вычислительной машины. Тремя годами позже он выпустил статью «Счётные машины и интеллект» (англ. Computing Machinery and Intelligence ), в которой обсудил вопросы оценки интеллектуальности машины и предложил критерий, по которому машина может считаться интеллектуальной, если она может убедительно представиться человеком информированному наблюдателю. Это было названо по имени создателя, «Тестом Тьюринга». При этом, в дальнейшем неоднократно проводились слепые тесты Тьюринга, которые показали, что большинство людей готовы признать человеком довольно глупую программу [1] .

Описание

Искусственный интеллект (ИИ, англ. artificial intelligence, AI ) — свойство искусственных вычислительно-интеллектуальных систем выполнять задачи, традиционно считающиеся прерогативой человека, в первую очередь творческого характера, а также наука и технология создания интеллектуальных машин, особенно интеллектуальных компьютерных программ. Не следует путать искусственный интеллект с искусственным сознанием. Искусственные интеллекты, существующие на настоящий момент — весьма узкоспециализированные и чаще всего некомпетентны за пределами своей основной задачи.

Могут ли машины стать умнее, чем люди? Нет, считает Жан-Габриэль Ганасия: это всего лишь миф, навеянный научной фантастикой. В своей статье он напоминает об основных этапах развития этой отрасли науки, о достижениях современной техники и об этических вопросах, все больше требующих к себе внимания.

Однако популярность термина «искусственный интеллект» во многом объясняется его ошибочным толкованием – в частности, когда им обозначают некую искусственную сущность, наделенную разумом, которая якобы в состоянии конкурировать с людьми. Эта мысль из области древних легенд и преданий, звучащая как миф о Големе, с недавних пор реанимируется такими нашими современниками, как британский физик Стивен Хокинг (1942-2018 гг.), американский предприниматель Илон Маск и американский инженер Рэй Курцвейл, а также сторонниками создания так называемого сильного или общего ИИ. Не будем, впрочем, говорить о данном понимании этого термина, ибо оно скорее представляет собой появившийся под влиянием научной фантастики продукт богатого воображения, а не осязаемую научную реальность, подтвержденную опытами и эмпирическими наблюдениями.

Методы машинного обучения позволяют одним автоматам распознавать устную речь и записывать ее подобно секретарям-машинисткам прошлых лет, а другим – точно идентифицировать лица или отпечатки пальцев среди десятков миллионов других и обрабатывать тексты, написанные на естественных языках. Благодаря этим же методам самостоятельно движутся автомобили, компьютеры лучше врачей-дерматологов диагностируют меланомы по фотографиям родинок, сделанных с помощью сотовых телефонов, роботы воюют вместо людей; а конвейеры на заводах все больше автоматизируются.

Прогресс замедлился в середине 1960-х годов. В 1965 году десятилетний мальчик одержал в шахматном матче победу над компьютером; в 1966 году в докладе, подготовленном по заказу Сената Соединенных Штатов Америки, говорилось о внутренних ограничениях, присущих машинному переводу. Около десяти лет пресса отзывалась об ИИ неодобрительно.

В 1956 году Джон Маккарти впервые в истории ввёл в оборот термин «искусственный интеллект» (англ. artificial intelligence ). Год спустя Аллен Ньюэлл, Герберт Саймон и Клиффорд Шоу разработали первую программу, попавшую в эту категорию. Она предназначалась для игры в шахматы и в отличие от предыдущих основывалась на эвристике, то есть не имела точных теоретических оснований. В 1960 году ими же была разработана программа для решения головоломок, основанная на тех же принципах [3] .

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь