Содержание статьи
Искусственный интеллект как определить
Что представляет собой система управления ИИ?
Международные стандарты в области искусственного интеллекта представляют собой основу для ответственного и этичного использования технологий ИИ. Они охватывают такие области, как конфиденциальность, предвзятость, прозрачность и подотчетность. Придерживаясь подобных стандартов, организации могут обеспечить справедливость, прозрачность и соблюдение этических принципов в своих системах ИИ.
Как же работает машинное обучение? Оно начинается с данных. С большого количества данных. Алгоритмы машинного обучения обучаются на огромных массивах данных, которые они анализируют, чтобы выявить закономерности, взаимосвязи и тенденции. Затем такие закономерности можно использовать для прогнозирования или принятия решений на основе новых, еще не изученных данных.
В этой игре смысловых вопросов и ответов участвуют три игрока, в которых один игрок — это компьютер, другой игрок — человек-ответчик, а третий игрок — человек-дознаватель, который изолирован от двух других игроков. Во время теста человек разговаривает с компьютером и должен определить, кто ведёт беседу — машина или человек.
Основной способ общения ИИ с человеком — это текст и его голосовое озвучивание. Аналитики отмечают, что использование ИИ в написании текстов само по себе не является негативным. Последние данные показывают, что человек может точно идентифицировать авторов и продукт ИИ только примерно в 50% случаев. В этой статье расскажем о некоторых способах идентификации текста, написанного искусственным интеллектом.
Тест Тьюринга — эмпирический тест, предложенный Аланом Тьюрингом в 1950 году. Интерпретация теста звучит так: если машина отвечает на заданные вопросы так, что человек не в состоянии определить, общается он с другим человеком или с компьютером, тест считается пройденным
ИИ способен произвести революцию в различных отраслях, позволяя машинам решать сложные задачи и мыслить интуитивно, выходя за рамки простой автоматизации. ИИ включает в себя различные области и технологии, такие как машинное обучение и обработка естественного языка.
В 2011 году Левеск опубликовал статью, в которой предложил новый тест, так называемую «схему Винограда», названную в честь учёного Терри Винограда. Проходя этот тест, машина отвечает на вопросы с двумя вариантами ответа. Звучит просто — и для людей эти вопросы действительно простые, — но они сформулированы так, что без естественного понимания языка машина испытывает трудности. Вот один из вопросов: «Трофей не влезал в коричневый чемодан, потому что он был слишком маленьким (большим). Что было слишком маленьким (большим)?». Если в вопросе используется слово «маленьким», то ответ — трофей, если «большим» — то чемодан. Эрнест Дэвис, коллега Левеска, работавший с ним над исследованием, опубликовал целую библиотеку вопросов, которые могут быть использованы в таком тесте. Чтобы ответить правильно, нужно обладать навыками, которые до сих пор недоступны компьютерам: например, уметь представлять пространство, отношения между людьми, размер объектов, даже нюансы политики — всё зависит от конкретных вопросов.
Испытание IKEA (также известное как строительное испытание), придуманное Ортицом, призвано обойти эти ограничения. Его могут пройти только роботы, способные построить физические структуры из, например, деталей мебели IKEA или даже кубиков LEGO. Робот, проходящий испытание IKEA, должен давать вербальные инструкции и описания структур, самостоятельно манипулировать деталями и физическими компонентами, следить за постройкой, отвечать на вопросы и описывать ход работы.
Оглавление
Этот тест назван в честь Ады Лавлейс, математика из XIX века, которую считают первым в истории программистом. Он призван определить наличие интеллекта у машины через способность её к творчеству. Первоначально тест предложили в 2001 году: тогда машина должна была создать произведение искусства, которое разработчик машины принял бы за созданное человеком. Так как чётких критериев успеха нет, тест получается слишком неточным.
Хотя это не всегда очевидно, искусственный интеллект уже давно стал неотъемлемой частью повседневной жизни миллионов людей. Виртуальные помощники, такие как Siri и Alexa, являются яркими примерами того, как искусственный интеллект может поддерживать человека в самых разных сферах — хотя бы тем, что делает жизнь более удобной.
Этот тест придумал Чарли Ортиц, менеджер по искусственному интеллекту в компании Nuance Communications. По словам Ортица, недостаток теста Тьюринга в том, что он проверяет в первую очередь языковые способности, опуская другие важные составляющие разума — восприятие и физические действия. Проще говоря, у компьютеров, проходящих тест Тьюринга, нет глаз или рук.
Машине показывают картинку и спрашивают, например, где на ней находится чашка, — и дают несколько вариантов ответа. Все варианты ответов правильные (на столе, на подстилке, перед стулом, слева от лампы), но некоторые из них могут быть более человеческими, чем другие (скажем, из всего перечисленного человек скорее ответит «на столе»). Кажется, что это простое задание, но на самом деле способность описать, где находится объект по отношению к другим объектам — важнейший элемент человеческого разума. Здесь играют роль множество нюансов и субъективных суждений, от размера объектов до их роли в конкретной ситуации — в общем, контекст. Люди проделывают это интуитивно, а машины сталкиваются с проблемами.
Как и Ортиц, создатели визуального теста Тьюринга пытаются уменьшить роль языка в первоначальном тесте. Сотрудники Эксетерского университета в Англии Майкл Барклай и Энтони Галтон придумали тест, который проверяет визуальные способности машины, то есть может ли она «видеть», как человек. Тест можно посмотреть здесь.
Например, при обучении на непроверенных данных искусственный интеллект может копировать негативные предрассудки о расе, религии, воспитании и других характеристиках человека. Такие случаи могут стать потенциально опасными, если искусственный интеллект будет использоваться в здравоохранении, подборе персонала, юриспруденции и других сферах, ориентированных на человека.
Создавая ответственный искусственный интеллект
Для тех, кто не знаком с компьютерными науками, попытка разобраться в многочисленных аспектах искусственного интеллекта и их последствиях может оказаться непосильной задачей. Здесь мы расскажем, что такое искусственный интеллект, как он работает, в чем разница между машинным обучением, глубоким обучением, обработкой естественного языка и многим другим. Давайте приступим.
Еще одна из ключевых этических проблем, связанных с ИИ, — это конфиденциальность. Поскольку системы искусственного интеллекта собирают огромные объемы данных из баз данных по всему миру, необходимо обеспечить защиту личной информации и ответственное ее использование. Например, технология распознавания лиц, часто используемая в системах безопасности или на платформах социальных сетей, вызывает вопросы о получении предварительного согласия и возможном неправомерном использовании.
Машинное письмо обладает специфическими особенностями, которые отличают его от человеческого. Поэтому второй способ основывается на анализе стилистики текста. Например, искусственный интеллект может проявлять большую последовательность в использовании определенных слов и фраз по сравнению с человеком, а также может демонстрировать определенные структурные особенности.
В группах людей, взаимодействующих с ИИ, экспериментально установлено, что высокая грамматическая правильность и использование местоимений первого лица часто ошибочно приписывались тексту, созданному человеком. Ссылки на семейную жизнь и использование неформального разговорного языка также были ошибочно отнесены к тексту, созданному человеком.
Чат-боты, проходящие тест Тьюринга, умело обманывают судей и заставляют поверить, что они — люди. По словам Гектора Левеска, профессора информатики в Университете Торонто, такой тест лишь показывает, как легко обмануть человека, особенно в короткой текстовой переписке. Но из теста Тьюринга невозможно понять, есть ли у машины интеллект или хотя бы понимание языка.
Глубокое обучение — это разновидность машинного обучения. Тем не менее, глубокое обучение может анализировать больше типов информации и выполнять более сложные операции. Процесс глубокого обучения вдохновлен структурой и функциями человеческого мозга — в частности, тем, как нейроны связаны между собой и работают вместе для обработки информации. Благодаря этому, глубокое обучение позволяет делать более тонкие и глубокие прогнозы на основе предоставленных данных.
Искусственный интеллект, способный синтезировать, анализировать и действовать на основе огромных объемов данных за считанные секунды, является чрезвычайно мощным. Как и в случае с любой другой мощной технологией, очень важно ответственно подходить к ее внедрению, чтобы максимально использовать ее потенциал и при этом минимизировать негативные последствия.
Рассматривайте ее как дорожную карту для разумного использования ИИ по мере развития данной технологии. Система управления ИИ представляет собой структурированный способ управления рисками и возможностями, связанными с ИИ. Она включает в себя такие ключевые компоненты, как прозрачность, объясняемость и автономность, давая организациям четкие указания по использованию ИИ в соответствии с развивающимися нормативными актами (например, Законом ЕС об ИИ).