Содержание статьи
Что такое нейросети: как и где используются нейросети, какие виды нейросетей существуют
Как правильно использовать нейросети
Так ли это – покажет время, но уже сегодня генеративный ИИ постепенно вытесняет с рынка кадры. Например, под угрозой авторы контента для наполнения сайтов, графические дизайнеры и иллюстраторы, онлайн-консультанты (им на смену приходят чат-боты), специалисты по озвучиванию и многие другие. Второе направление – отрасли, которые можно автоматизировать, речь идет о логистике, доставке, упаковке и аналогичных направлениях.
Так часто происходит в реальных задачах, например, при распознавании предметов. Не у всех из них есть жесткие критерии: скажем, гипертрофированного мультяшного персонажа мы по-прежнему различаем как человека, хотя у него совсем другие пропорции. Нейронную сеть сложно научить похожему — но современные системы могут справиться и с этим.
Нейронная сеть – компонент искусственного интеллекта (ИИ или AI), является компьютерной системой, выстроенной на базе искусственных нейронов (вычислительные элементы). Как биологические нейроны в мозге человека, искусственные осуществляют обмен информацией. Не являются классической программой с готовыми алгоритмами, а пишут их в процессе обучения. Например, если генеративному ИИ показать тысячу примеров домов – она будет легко распознавать их в разных вариациях и сюжетах. Чем больше выборка домов, тем выше точность сети. Классическая структура включает в себя 3 слоя искусственных нейронов:
Другие методы и формулы. Чтобы нейроны обучались, нужно задать формулу корректировки весов — мы говорили про это выше. Если нейронов много, то формулу нужно как-то распространить на все из них. Для этого используется метод градиентного спуска: рассчитывается градиент по весам, а потом от него делается шаг в меньшую сторону. Звучит сложно, но на самом деле для этого есть специальные формулы и функции.
Например, на вход поступает картинка. Чтобы нейросеть могла понять, что на ней изображено, она должна выделить разные элементы из картинки, распознать их и подумать, что означает сочетание этих элементов. Примерно так работает зрительная кора в головном мозге. Это несколько задач, их не смогут решить одинаковые нейроны. Поэтому нужно несколько слоев, где каждый делает что-то свое. Для распознавания часто используют так называемые сверточные нейросети. Они состоят из комбинации сверточных и субдискретизирующих слоев, каждый из которых решает свою задачу.
ИИ качественно выполняет проверку, улучшение и дополнение кода. Поддерживают более 50 языков программирования, некоторые сети способны писать код на базе запросов на естественном языке + автодополнение. Доступны инструменты для создателей сайтов, компьютерных программ, мобильных приложений, прочих продуктов.
Программирование и создание сайтов
Нейросети применяются для создания визуального контента – это иконки, видеоролики, изображения. Дополнительно стоит выделить написание музыки и озвучку. Есть повышение качества картинок и управление основными параметрами: раскрашивание, черно-белый, редактирование с удалением предметов, дорисовка фона, объединение нескольких фото и другое. Помимо этого, сети умеют переносить в цифровое пространство все нарисованное от руки. Например, дизайнер сделал эскиз макета сайта на бумаге, достаточно сфотографировать его и преобразовать, используя потенциал нейронки.
С нейросетями немного сложнее, их невозможно запрограммировать один раз и навсегда: они обучаются, самостоятельно пишут алгоритмы и инструкции, проводят сверку с ответами. Например, сеть для генерации изображений: изначально она «увидела» огромное количество картинок с подписями, чтобы научиться определять, что же на них запечатлено. Если нужно обучить нейронку распознавать текст или музыку – применяются подходящие примеры. Рассмотрим, как это работает:
Российский сегмент генеративного ИИ развивается темпами, существенно опережающими мировые. В 2023 году выручка крупнейших ИИ-поставщиков выросла практически на 90%, но это не предел. Участники рынка отмечают, что качество продуктов не уступает зарубежным аналогам, а государственные программы поддержки и ориентирование на импортозамещение позволяют создавать/дорабатывать то, чего не хватает клиентам. Что сейчас в тренде и на пике развития:
В классическом программировании все очень упорядочено: разработчик пишет инструкцию, программа дает заданный результат. Например, можно указать, как выполняется расчет времени в пути, после чего программа будет делать это точно по конкретному алгоритму.
Domino’s Pizza. Компания ведет работу с Phrasee – генератором контента, который пишет электронные письма и интересные заголовки для пуш-уведомлений. Пока проект реализуется в тестовом режиме. Дополнительно – привлечение генеративного AI для повышения как численности клиентов, так и их лояльности. Сотрудничество с Phrasee позволило увеличить коэффициент кликов на более чем 50%.
В запросе важны конкретика и четкие параметры, дополнительно можно использовать универсальные подсказки, знакомые каждой нейронке: «опиши пошагово», «нарисуй в стиле», «от лица маркетолога» и аналогичные. Если реализована загрузка примеров – рекомендуется прибегнуть к функции, чтобы повысить качество результата и сократить количество генераций. На старте лучше использовать бесплатные нейросети, помогающие набить руку и понять принцип формирования запросов.