Содержание статьи
Почему искусственный интеллект может оказаться опаснее атомной бомбы
Роботизироваться будешь?
Мы должны сделать так, чтобы молодое поколение создавало высокотехнологичные компании, потому что технологии способны генерировать богатство и обеспечивать процветание общества. Будьте как Безос, который сделал капитализм более эффективным, устранив многие его недостатки с помощью цифровых технологий.
Александр Кулешов: Есть такой термин — предвзятость ИИ. Предположим, вам надо научить нейросеть распознавать рак по снимкам МРТ. Ей показывают множество снимков и говорят, это рак, это не рак. Но кто дает исходную информацию? Врач! И нейросеть работает по алгоритму, созданному на основе информации, полученной от человека. Это и есть предвзятость ИИ. А вот куда более сложная ситуация. Вам надо научить ИИ разбираться в международной обстановке, чтобы понять, в какой зоне опасности — зеленой, желтой или красной — находится страна. Как это всегда делалось? Собиралось множество самых разных данных, а потом суперспециалисты проводили мозговой штурм. И принималось решение, какова степень опасности. Теперь представьте, что решение о пуске ракет будет принимать ИИ. Но он обучен на примерах, которые дали те самые специалисты. Поэтому интеллект лишь отобразит их представления, страхи, предвзятости. Он будет вести себя так же, как люди, его обучившие.
Интересный факт: в аэропорту Хельсинки собак обучили обнаруживать коронавирус за 10 секунд. 10 секунд! Они распознают коронавирус с 95-процентной точностью. А в будущем высокотехнологичные датчики смогут идентифицировать подобные вирусы в считаные секунды.
Александр Кулешов: Это объяснение на пальцах того, что может происходить в «черном ящике», но как идет обучение, пока до конца непонятно. Причем еще недавно подобное казалось совершенно невозможным, но за последние годы произошел прорыв, и сейчас строить нейронные сети может студент 3-4-го курса. Но эта легкость обманчива и опасна. Потому что, повторяю, механизм действия до конца неясен.
Зеленая зона — все хорошо, прибор работает в штатном режиме. Желтая — есть некоторые тренды в сторону аномального поведения, возможно, прибор нужно остановить, разобрать, смазать маслом, провести техническое обслуживание, и дальше он вернется в зеленую зону. Красная зона, когда есть явное предсказание того, что произойдет поломка или явное отклонение в производительности, например, снижение на 20% скорости относительно номинальной или заданной. Все эти показатели можно предсказывать по данным оборудования, которые собираются с различных сенсоров.
Например, мы хотим, чтобы нейросеть определяла по губам, что я говорю и как. Тогда нам нужно большое количество данных с условиями освещения. А если я буду в очках, что произойдет? Если нейросеть никогда меня в очках не видела, она эмоции, которые я передаю, не распознает — ей неоткуда взять эту информацию, соответственно, мы не можем гарантировать, что она будет правильно работать.
Публикации российских ученых составляют, по самым оптимистичным оценкам, менее 5% от всех работ по изучению ИИ, сообщил «Газете.Ru» руководитель исследовательской группы «ИИ в промышленности» Института искусственного интеллекта AIRI Илья Макаров, с которым удалось побеседовать в рамках Летней школы AIRI на федеральной территории «Сириус. По его словам, в России можно наблюдать технологическое отставание в области ИИ. О том, как его преодолевают, о таких фундаментальных проблемах искусственного интеллекта, как «забывание» и «обобщаемость», а также о малом количестве русскоязычных обучающих датасетов и проблемах подготовки кадров — в материале «Газеты.Ru».
Кроме того, существующие архитектуры и методы решения не позволяют научить ИИ ставить себе новые цели, достигать их и оценивать качество результата. Пока то, что мы реально можем делать — это самый слабый ИИ, который будет имитировать человека, может быть, даже что-то делать лучше, например, играть в шахматы.
Идеальный капитализм
Представьте, у вас есть две функции, которые нужно оптимизировать. Вы хотите, например, чтобы объекты хорошо классифицировались, и еще чтобы они хорошо локализовались на картинке. Как обучать такую модель? Выбирая из двух зол, вы выбираете: «Я хочу, чтобы в среднем в сумме они давали минимальную ошибку». Но идеального баланса не существует, приходится выбирать и пока это делает человек.
Митио Каку: Десятилетием искусственного интеллекта! Умнее станут не только смартфоны — даже диваны превратятся в смарт-диваны. А смартфон будет устройством доступа буквально ко всему. Например, если вам понадобится медицинская помощь, вы обратитесь к специальной программе с ИИ, установленной на ваш телефон. Вы будете разговаривать с ботом, который имеет доступ к базам медицинских данных и способен поставить диагноз. Узнать о состоянии организма, проверить сердечный ритм или взять образец крови можно будет в виртуальной клинике внутри смартфона.
В этом плане индустриальные академии, которые запускают крупные компании, готовят специалистов, которые могут работать сразу после выпуска, у которых есть практические и теоретические навыки. На базе вуза с фиксированной программой, редкой аккредитации и медленным процессом внесения изменений в образовательную программу, это сделать практически нереально. В основном все делается на личном энтузиазме отдельных руководителей и преподавателей.
— Сильного ИИ сейчас не существует, но на уровне концепции подразумевается, что он способен к самообучению, определению для себя целей и выбору средств для их достижения. Подразумевается, что сильный ИИ должен по когнитивным способностям быть на уровне человека, а с учетом технологических и вычислительных возможностей, даже превосходить его.
Второй кейс — «светофор», или индикатор здоровья оборудования. У оборудования есть износ, и подразумевается, что оборудование какое-то время должно работать нормально, а потом может начать барахлить или отклоняться от плановых показателей работы. Формулируется задача — оценивать состояние этого оборудования, его «здоровье».
Недавно группа исследователей AGI NLP из SberDevices под руководством Татьяны Шавриной приняла участие в создании книги, в которой половина рассказов написана человеком, а половина — нейросетью. При этом люди, читая книгу, путают человека и машину, не могут отличить, кто писал тот или иной рассказ. Грубо говоря, нейросеть проходит тест Тьюринга — неотличимость от человека. Это прекрасно для разработчиков, и потенциально – вызов для авторов.
Митио Каку: Оно необходимо, потому что иначе рано или поздно машины станут умнее нас, это лишь вопрос времени. Я думаю, это произойдет через несколько столетий, хотя некоторые оптимисты считают, что речь идет о десятилетиях. Как физик я строю свои прогнозы, исходя из возможностей кремниевых технологий.
Или представим, как будут праздновать Рождество. Каждый сможет загрузить дизайн любой игрушки, любого объекта из Сети или из головы, отправить его силой мысли на 3D-принтер и распечатать подарок прямо под елку. Кстати, уже сейчас 3D-принтеры печатают изделия из металла, а значит, любой может создать обручальное кольцо собственного дизайна.
Поговорим со Сталиным?
— Да, под любое производство, где есть сенсоры, которые описывают состояние процесса и которых достаточно для моделирования. Если будет только датчик температуры, то мы мало что сможем сделать. Но в целом этот подход универсальный. Он требует донастройки в каждом конкретном кейсе, когда мы говорим о внедрении, но все-таки это универсальные методы.
Возьмем, например, искусство — оно станет совсем не таким, как сегодня. Ведь все, что вы в принципе способны мысленно визуализировать, можно будет сразу распечатать на 3D-принтере. Мы будем создавать произведения искусства в своем сознании. Художникам это точно понравится!
«Вместо множества устройств — компьютера, смартфона, планшета, ноутбука — будет одно. Размер его экрана можно будет регулировать. Обои в домах станут интерактивными. Это значит не только то, что стиль интерьера можно будет изменить в любой момент, но и что, проснувшись ночью с болью в груди, можно будет позвонить боту-доктору, который проведет диагностику и даст рекомендации. Для этого нужно будет просто повернуться к стене. Похожими способами можно будет всегда связаться с кем угодно».
Митио Каку: Скорее, он изменит наше представление о профессиях. Я преподаватель и читаю лекции в университете, но сейчас студенты спокойно могут прослушать курс в Сети. Очень скоро преподаватели станут больше похожи на наставников, которые консультируют своих учеников. Роботы не могут быть наставниками, они вообще очень плохи в межличностных отношениях.
— В целом да. Слабый тоже может заменить Стивена Кинга. Что он не сможет сделать, это создать какую-то личность, но он сможет сымитировать его стиль изложения. Создать бренд для цифрового аватара – то, чем сейчас активно занимаются специалисты в цифровом маркетинге.
— В целом, университетское образование даже в большинстве ведущих вузов отстает от темпов, которыми нужно обучать студентов, чтобы они могли работать хотя бы не на начальных позициях. Студент на выпуске не только не готов и не умеет писать код в продакшене, но еще по многим программам отстает от бурного развития науки.
Митио Каку: Большинство футуристов сказали бы, что технологический прогресс не имеет направления, он вне морали — хорош и плох одновременно, как меч, который может быть использован и в добрых целях, и в злых. Я же не согласен с большинством и думаю, что технологический прогресс имеет этическую направленность, постепенно меняя мир к лучшему. Простые люди получают доступ к знаниям в интернете и начинают лучше понимать, как устроен мир, это дает им возможность участвовать в создании будущего. Интернет способствует демократии: люди ведут дискуссии и обнаруживают, что не обязаны жить при диктатуре или верить всему, что говорит правительство. Наконец, интернет помогает им организоваться и реализовать свои политические идеи.
— Это не проблема, это называется технологическое отставание. Недавно исследовательские группы внутри Сбера и «Яндекса» выложили русскоязычные языковые модели, и это существенный шаг вперед, потому что до этого у нас были только большие англоязычные модели, приходилось их дообучать на русский язык.