Для чего применять нейросети

0
17

Для чего применять нейросети

Плюсы и минусы нейросетей

Разберём работу нейросетей на примере популярной Kandinsky 3.0 от Сбера. Для обучения и генерации конечного результата эта сеть перерабатывает огромное количество текстовых данных и изображений. Это позволяет ей создавать красивые картинки на основе заданных параметров. Вот в чём состоит принцип действия:

Нейронные сети – это одно из направлений в разработке систем искусственного интеллекта. Не единственное, но очень популярное из-за своих возможностей в сфере развлечения. Сейчас о них говорят на каждом углу, а впервые о таких сетях услышали еще в 1943 году. Кстати, тогда еще не существовало даже понятия «искусственный интеллект», а сети уже были.

Нейронные сети стали называть так из-за принципов работы математической модели, которая чем-то напоминает функционирование нашей нервной системы. Уверены, что вы и сами в курсе: у нас есть нейроны, образующие нервную систему. Их главная задача — распространять информацию по всему телу, используя электрические и химические сигналы. Они черпают ее из окружающей среды или организма, оценивают ее, думают, как отреагировать, а еще запоминают. Вообще, это крайне занятные штуки, и на эту тему есть множество прекрасных книг (читайте — нейроны скажут вам спасибо). Мы же вернемся к их искусственным (?) коллегам.

В обучаемости. Без этого они просто были бы еще одной математической моделью, но благодаря обучению могут приводить в шок непосвященных. Нейросети могут распознавать более глубокие, иногда неожиданные закономерности в данных. Объяснить на пальцах это не так просто. В общем смысле слова, обучение заключается в нахождении верных коэффициентов связи между нейронами, а также в обобщении данных и выявлении сложных зависимостей между входными и выходными сигналами. Если вначале ее легко обмануть, то через пару сотен тысяч действий, она легко распознает, если вы пытаетесь дать ей что-то не то.

В 2024 году тот, кто приручил нейросеть — уже как минимум на шаг опередил конкурентов. Ведь нейронные сети существенно упрощают работу и ускоряют бизнес-процессы. Что же такое нейросети, какую пользу они могут принести бизнесу, в чём отличие нейросети от искусственного интеллекта — это и многое другое вы найдёте в нашей статье. В конце материала вас ждёт список нейросетей, которые упростят работу на маркетплейсах.

Среди основных областей применения нейронных сетей — прогнозирование, принятие решений, распознавание образов, оптимизация, анализ данных. Нейросети лежат в основе большинства современных систем распознавания и синтеза речи, а также распознавания и обработки изображений. Они применяются в некоторых системах навигации, будь то промышленные роботы или беспилотные автомобили. О примерах мы поговорим чуть позже, а пока же узнаем…

Это опять же свойство, взятое из человеческого мозга. Нейронные связи в нашей нервной системе укрепляются, когда мы что-то выучиваем, — в итоге мы помним и делаем это лучше. Так появляются знания и навыки. У искусственных нейронных сетей так же: просто вместо физического изменения нервной ткани здесь происходит изменение числовых значений.

Для эффективного обучения нужно много повторений. Иначе нейронная сеть будет работать неточно — ведь входные данные могут серьезно различаться, а она окажется натренирована только на один возможный вариант. Поэтому обучение проводится в несколько итераций и эпох.

Три задачи нейронных сетей

Классификация Такие нейросети берут заданные данные и классифицируют их. Например, могут догадаться, к какому жанру относится текст, или оценить платежеспособность человека по его банковскому профилю Предсказание Эти сети делают какие-то выводы на основе заданной информации. Сюда можно отнести как предсказание будущих доходов по текущим данным, так и «дорисовывание» картинки Распознавание Часто применяемая задача — распознавать те или иные объекты. Такие нейросети используются в умных камерах, при наложении фотофильтров, в камерах видеонаблюдения и других подобных программах и устройствах.

Представьте себе сельскохозяйственный комбайн, исполнительные механизмы которого снабжены множеством видеокамер. Он делает пять тысяч снимков в минуту каждого растения в полосе своей траектории. Каждый снимок сам по себе ничего не значит. Но используя нейросеть, сравнивая полученные результаты с теми, что есть в его программе, комбайн анализирует — не сорняк ли это, не поражено ли оно болезнью или вредителями. И обрабатывает каждое растение индивидуально. Фантастика? Уже не совсем. А через пять лет может стать нормой.

ЧИТАТЬ ТАКЖЕ:  Как запустить нейросеть на питоне

Синапсы. Синапс — это связь между нейронами. У каждого синапса есть веса — числовые коэффициенты, от которых как раз и зависит поведение нейронной сети. В самом начале, при инициализации сети, эти коэффициенты расставляются случайным образом. Но в ходе обучения они меняются и подстраиваются так, чтобы сеть эффективнее решала задачу.

Искусственная нейронная сеть — не модель человеческого мозга: даже самые мощные из существующих сетей не могут достигнуть таких мощностей и подобного количества нейронов. В человеческом мозгу огромное количество нервных клеток — десятки миллиардов. В искусственных нейросетях намного меньше нейронов. Для создания нейронной сети, по возможностям равной человеческому мозгу, сейчас нет мощностей.

Нейросеть — это компьютерная система, которая имитирует работу нейронов в мозге человека. Она состоит из множества «нейронов», соединённых между собой и передающих информацию по цепочке. Нейросети используются во многих сферах для решения различных задач, в том числе для распознавания образов, обработки речи и прочего.

Но что еще главное – людям понравилось, и они стали готовы платить за развлечение. В итоге, когда пару лет назад белорусские разработчики создали приложение MSQRD, добавляющее маски к вашим лицам на камере онлайн, они и подумать не могли о том, что пользователем забавной игрушки станут миллионы. Популярность приложения стала так высока, что Facebook купила их за 85 миллионов долларов. Неплохо для небольшой компании!

Как обучают нейросети

К середине 2019 года нейросети обрели невероятную мощь. До восстания машин еще далеко, но прогресс налицо: они умеют не только развлекать, но и лечить, учить и работать. Попробуем на простых примерах, рассказать, что это такое, и как нейросети, обучаясь сами, обучают и нас

Но разработки в этом направлении ведутся — правда, пока такие проекты находятся на стадии исследований. И даже с небольшим по сравнению с мозгом количеством нейронов нейросети могут достигать поразительных результатов в обучении. Некоторые даже проходят тест Тьюринга, но с оговоркой: сознания у них нет, просто они хорошо научились имитировать его наличие. Иногда даже человек не всегда способен распознать в своем собеседнике нейронную сеть.

Обучение не так просто, как кажется. В нейронных сетях есть эффект переобучения: если тренировочных сетов слишком много и они слишком разные, нейросеть «теряется» и перестает эффективно выделять признаки. В результате она может, например, воспринять артефакт графики как чье-то лицо или перепутать мужчину с женщиной. Это происходит из-за размытия весов. И это не единственная ошибка, просто самая известная.

Потому что мощности стали позволят разрабатывать нейросети даже небольшим компаниям. А главное — появились готовые, предобученные нейросети, распознающие образы, на основании которых можно делать свои приложения, не занимаясь длительной подготовкой нейросети к работе. По сути, создав один раз нейросеть, которая что-то делает с фотографиями (различает лицо, например), вы потом сможете использовать этот алгоритм и на других подобных проектах.

Нейронными сетями занимаются специалисты по машинному обучению. Они не пишут программы, основанные на алгоритмах: вместо этого они создают модель и обучают ее, а потом тестируют, насколько хорошо она работает. Есть отдельные компании, специализирующиеся на разработке нейросетей, а есть продуктовые отделы крупных IT-организаций, например Google.

Стоит ли опасаться развития искусственного интеллекта до таких высот, что он потребует у вас мотоцикл и куртку? Вряд ли. Сегодня все подобные сервисы создаются скорее не для решения глобальных задач, на которые и нацелены нейросети, а для демонстрации способностей нейронной сети и проведения её обучения. «Многие прорывные результаты исследований пока не очень применимы в бизнесе. На практике зачастую разумнее использовать другие методы машинного обучения — например, различные алгоритмы, основанные на деревьях решений. Наверное, это выглядит не так захватывающе и футуристично, но эти подходы очень распространены», — пишет Борис Вольфсон, директор по развитию HeadHunter. А раз так, то человечество по-прежнему остается главным врагом самому себе

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь