Содержание статьи
Искусственный интеллект: Что это такое, как он работает и почему он важен
Ликбез
Мы собираем данные (чем больше, тем лучше), состоящие из объектов и ответов. К примеру, мы хотим создать робота-офтальмолога, который сможет диагностировать глазные заболевания. В таком случае объекты — это изображения больных и здоровых глаз, а ответы — диагнозы.
Например, при обучении на непроверенных данных искусственный интеллект может копировать негативные предрассудки о расе, религии, воспитании и других характеристиках человека. Такие случаи могут стать потенциально опасными, если искусственный интеллект будет использоваться в здравоохранении, подборе персонала, юриспруденции и других сферах, ориентированных на человека.
Раньше, чтобы создать алгоритм, программисты придумывали и прописывали правила формата «если… то…». Их было очень много. И всё равно алгоритм не знал, как вести себя за пределами заданных ему заранее условий. Сегодня же всё работает по технологии машинного обучения.
ИИ способен произвести революцию в различных отраслях, позволяя машинам решать сложные задачи и мыслить интуитивно, выходя за рамки простой автоматизации. ИИ включает в себя различные области и технологии, такие как машинное обучение и обработка естественного языка.
Глубокое обучение — это разновидность машинного обучения. Тем не менее, глубокое обучение может анализировать больше типов информации и выполнять более сложные операции. Процесс глубокого обучения вдохновлен структурой и функциями человеческого мозга — в частности, тем, как нейроны связаны между собой и работают вместе для обработки информации. Благодаря этому, глубокое обучение позволяет делать более тонкие и глубокие прогнозы на основе предоставленных данных.
Обеспечение ответственного подхода к разработке ИИ имеет решающее значение для его безопасного, надежного и этичного развития. Но как можно решить вопросы прозрачности и объяснимости в контексте ответственного использования ИИ? Подробно данные понятия рассмотрены в нашей статье о создании ответственного искусственного интеллекта.
Международные стандарты в области искусственного интеллекта представляют собой основу для ответственного и этичного использования технологий ИИ. Они охватывают такие области, как конфиденциальность, предвзятость, прозрачность и подотчетность. Придерживаясь подобных стандартов, организации могут обеспечить справедливость, прозрачность и соблюдение этических принципов в своих системах ИИ.
Однако, когда на сцену вышел генеративный ИИ, такой как ChatGPT, его удивительная способность имитировать человеческие реакции и доступность для каждого, у кого есть компьютер, неожиданно вывели дискуссии о машинном обучении и соблюдении этических норм в публичную сферу. Такие понятия, как глубокое обучение, NLP и нейронные сети, просочились в повседневные профессиональные и даже личные разговоры.
Стандарты и искусственный интеллект
Консалтинговое агентство KPMG называет данные валютой будущего. Но что не так с золотом, долларами, рублём? Дело в том, что с 1997 по 2002 год человечество сгенерировало больше информации, чем за всё время до этого. С каждым годом люди производят на 30% больше данных, чем в предыдущем. И чтобы справляться с таким потоком информации, разбираться в программировании и анализе данных сегодня должны уже не только «технари». Журналисты, врачи, социологи, психологи, маркетологи, которые могут автоматизировать свою работу, экономят время и силы, успевают выполнить больше задач и, как следствие, получают более высокие зарплаты.
Одним из примеров международного стандарта в области ИИ является ISO/IEC 23894, посвященный управлению рисками в системах ИИ. Целью данного стандарта является обеспечение того, чтобы алгоритмы и модели ИИ были понятны и могли быть проверены на предмет предвзятости и справедливости, что способствует укреплению доверия к системам ИИ.
Например, в рамках базового машинного обучения компьютер может научиться распознавать птиц на фотографиях. Обучаясь на фотографиях птиц и других животных или предметов, машина учится различать их, знакомясь с уникальными птичьими особенностями, такими как крылья и клювы.
Глубокое обучение позволяет сделать еще один шаг вперед. Продолжая пример с птицами, глубокое обучение может научиться распознавать не только основные черты птиц, но и такие сложные детали, как узоры на перьях, что сделает его намного более точным в идентификации птиц и даже позволит отделить орлов от голубей.
По своей сути искусственный интеллект — это способность машины или компьютерной системы выполнять задачи, для которых обычно требуется человеческий интеллект. Это включает в себя программирование систем для анализа данных, обучения на основе опыта и принятия разумных решений — под руководством человека. Наиболее известной формой ИИ являются виртуальные помощники, такие как Siri или Alexa, но существует множество разновидностей данной технологии.
Анализируя и интерпретируя язык, NLP позволяет компьютерам извлекать полезную информацию, отвечать на вопросы и вести беседу. Например, виртуальные помощники вроде Alexa могут понимать и предоставлять информацию о температуре на улице, заголовках новостей или среднем весе косатки.
Как же работает машинное обучение? Оно начинается с данных. С большого количества данных. Алгоритмы машинного обучения обучаются на огромных массивах данных, которые они анализируют, чтобы выявить закономерности, взаимосвязи и тенденции. Затем такие закономерности можно использовать для прогнозирования или принятия решений на основе новых, еще не изученных данных.
«Нейронная сеть написала сценарий для фильма», «ИИ превратит ваши фотографии в картины импрессионистов», «Беспилотные трамваи и поезда вышли на маршруты в Англии и Китае» — ещё недавно такие новости показались бы нелепыми шутками, однако сегодня это реальность. Она вызывает не только восторг, но и страх — остаться без работы, пасть жертвой восстания машин. Но вместо того чтобы бояться, лучше учиться и адаптироваться. Рассказываем, зачем осваивать ИИ и почему никогда не поздно заняться этим.