Что такое технология нейросетей

0
15

Нейронные сети

Как применяются нейросети

Глубокие нейронные сети отличаются тем, что искусственные нейроны в них связаны друг с другом, а каждой такой связи присваивается определенный вес, который отражает ее значимость. Кроме того, связь между нейронами может быть «упреждающей». Это означает, что данные проходят через них только в одном направлении. Такое происходит, если значение «веса» соединения ниже заданного.

При глубоком обучении специалист по работе с данными предоставляет нейросети только необработанные данные, а та самостоятельно извлекает функции и обучается независимо. Если результат неудовлетворительный, то цикл обучения повторяется снова, пока нейросеть не будет давать корректные ответы.

Искусственный интеллект — это область компьютерных наук, которая исследует методы предоставления машинам возможности выполнять задачи, требующие человеческого интеллекта. Машинное обучение — это метод искусственного интеллекта, который дает компьютерам доступ к очень большим наборам данных для дальнейшего обучения. Программное обеспечение для машинного обучения находит шаблоны в существующих данных и применяет эти шаблоны к новым данным для принятия разумных решений. Глубокое обучение — это разновидность машинного обучения, в котором для обработки данных используются сети глубокого обучения.

Рекуррентные нейронные сети (Recurrent neural network, RNN). Используют направленную последовательность связи между узлами. В RNN результат вычислений на каждом этапе используется в качестве исходных данных для следующего. Благодаря этому, рекуррентные нейронные сети могут обрабатывать серии событий во времени или последовательности для получения результата вычислений.

Нейронные сети прямого распространения обрабатывают данные в одном направлении, от входного узла к выходному узлу. Каждый узел одного слоя связан с каждым узлом следующего слоя. Нейронные сети прямого распространения используют процесс обратной связи для улучшения прогнозов с течением времени.

При контролируемом обучении специалисты по работе с данными предлагают искусственным нейронным сетям помеченные наборы данных, которые заранее дают правильный ответ. Например, сеть глубокого обучения, обучающаяся распознаванию лиц, обрабатывает сотни тысяч изображений человеческих лиц с различными терминами, связанными с этническим происхождением, страной или эмоциями, описывающими каждое изображение.

Обучение нейронной сети — это процесс обучения нейронной сети выполнению задачи. Нейронные сети обучаются путем первичной обработки нескольких больших наборов размеченных или неразмеченных данных. На основе этих примеров сети могут более точно обрабатывать неизвестные входные данные.

Идею нейронных сетей впервые предложили исследователи из Чикагского университета Уоррен Маккалоу и Уолтер Питтс в 1944 году. Первую обучаемую нейросеть в 1957 году продемонстрировал психолог Корнеллского университета Фрэнк Розенблатт. Она была примитивной (одноуровневой).

Архитектура базовой нейронной сети

Специалист по нейросетям должен быть знаком с передовыми методами разработки программного обеспечения, особенно с теми, которые касаются проектирования системы, контроля версий, тестирования и анализа требований. Также ему потребуются знания в области Data Science, такие как моделирование данных, оценка алгоритмов и моделей прогнозирования. Наконец, для презентации работы нейросети потребуется пользоваться технологиями пользовательского интерфейса, использовать диаграммы или визуализации.

Для работы в отрасли потребуются знания в области математики, статистики и основ программирования: знание языка Python, навыки работы с Linux, библиотеками Python для Data Science, в том числе Numpy, Matplotlib, Scikit-learn, навыки работы с базами данных, библиотеками машинного обучения PyTorch и TensorFlow.

Машинное зрение — это способность компьютеров извлекать информацию и смысл из изображений и видео. С помощью нейронных сетей компьютеры могут различать и распознавать изображения так, как это делают люди. Машинное зрение применяется в нескольких областях, например:

Сервисы глубокого обучения AWS используют возможности облачных вычислений, чтобы вы могли масштабировать свои нейронные сети глубокого обучения с меньшими затратами и оптимизировать их для повышения скорости. Вы также можете использовать подобные сервисы AWS для полного управления конкретными приложениями глубокого обучения:

Выходной слой дает окончательный результат обработки всех данных искусственной нейронной сетью. Он может иметь один или несколько узлов. Например, при решении задачи двоичной классификации (да/нет) выходной слой будет иметь один выходной узел, который даст результат «1» или «0». Однако в случае множественной классификации выходной слой может состоять из более чем одного выходного узла.

ЧИТАТЬ ТАКЖЕ:  Как подключить нейросеть к фотошопу

Традиционные методы машинного обучения требуют участия человека, чтобы программное обеспечение работало должным образом. Специалист по работе с данными вручную определяет набор соответствующих функций, которые должно анализировать программное обеспечение. Это ограничение делает создание и управление программным обеспечением утомительным и трудозатратным процессом.

Архитектура нейронных сетей повторяет структуру человеческого мозга. Клетки человеческого мозга, называемые нейронами, образуют сложную сеть с высокой степенью взаимосвязи и посылают друг другу электрические сигналы, помогая людям обрабатывать информацию. Точно так же искусственная нейронная сеть состоит из искусственных нейронов, которые взаимодействуют для решения проблем. Искусственные нейроны — это программные модули, называемые узлами, а искусственные нейронные сети — это программы или алгоритмы, которые используют вычислительные системы для выполнения математических вычислений.

Нейронные сети помогают компьютерам принимать разумные решения с ограниченным участием человека. Они могут изучать и моделировать отношения между нелинейными и сложными входными и выходными данными. Например, нейронные сети могут выполнять следующие задачи.

Алгоритм обратного распространения

Скрытые слои в сверточных нейронных сетях выполняют определенные математические функции (например, суммирование или фильтрацию), называемые свертками. Они очень полезны для классификации изображений, поскольку могут извлекать из них соответствующие признаки, полезные для распознавания и классификации. Новую форму легче обрабатывать без потери функций, которые имеют решающее значение для правильного предположения. Каждый скрытый слой извлекает и обрабатывает различные характеристики изображения: границы, цвет и глубину.

При обучении нейронной сети все ее «веса» изначально задаются случайными значениями. Обучающие данные подаются на нижний, или входной, слой. Затем они проходят через последующие слои, пока не достигают выходного. Во время обучения «веса» и пороговые значения постоянно корректируются до тех пор, пока данные обучения не будут постоянно давать одинаковые результаты.

Примечание: При такой модели обучение нейронной сети сводится к изменению коэффициенту весов, то есть связи между отдельными нейронами. Если вес положительный — сигнал в нейроне усиливается, нулевой — нейроны не влияют друг на друга, отрицательный — сигнал в принимающем нейроне погашается.

Однако возрождение интереса к нейронным сетям и революция в глубоком обучении произошли лишь в последние годы благодаря индустрии компьютерных игр. Современные игры требуют сложных вычислений для обработки большого числа операций. В итоге производители начали выпускать графические процессоры (GPU), которые объединяют тысячи относительно простых вычислительных ядер на одном чипе. Исследователи вскоре поняли, что архитектура графического процессора очень похожа на архитектуру нейросети.

С другой стороны, при глубоком обучении специалист по работе с данными предоставляет программному обеспечению только необработанные данные. Сеть глубокого обучения извлекает функции самостоятельно и обучается более независимо. Она может анализировать неструктурированные наборы данных (например, текстовые документы), определять приоритеты атрибутов данных и решать более сложные задачи.

В последние годы нейронные сети прошли путь от простых сортировщиков картинок на смартфонах до помощников в решении глобальных задач в науке. Современные нейросети способны заменить или дополнить работу человека во всех случаях, когда решение нужно принимать на основе предыдущего опыта. «РБК Тренды» разбирался, как устроены и работают нейросети, как их обучают и в каких сферах применяют.

Скрытые слои получают входные данные от входного слоя или других скрытых слоев. Искусственные нейронные сети могут иметь большое количество скрытых слоев. Каждый скрытый слой анализирует выходные данные предыдущего слоя, обрабатывает их и передает на следующий слой.

Само обучение бывает контролируемым и глубоким. В первом случае специалисты по работе с данными загружают для обучения нейросети помеченные наборы данных, которые заранее содержат правильный ответ. В процессе обучения нейросеть накапливает знания, а затем получает новые данные, чтобы построить уже свои предположения.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь