Что такое эпоха нейросети

0
14

Нейросеть: в чём разница между Batch и Epoch

Интересно то, что конкретные признаки, нужные для узнавания, неизвестны. Мы не можем точно сказать, почему понимаем, что кот — это кот, даже если он нарисован в необычном стиле и не похож на настоящего. У нейросетей так же. Разработчики до конца не знают, какие именно признаки «запомнила» нейросеть, — поэтому даже работающий и протестированный программный продукт может выдавать ошибки. Например, воспринимать человека с ободком в виде кошачьих ушек как кота.

Означают ли эти настройки, что модель будет обучаться с использованием только части обучающих данных (в каждую эпоху будут использоваться одни и те же 200 изображений (пакет*step_per_epochs)), а не все 1000 изображений?
или он будет использовать первые 200 изображений в наборе данных в первую эпоху, затем следующие 200 изображений во вторую эпоху и так далее (разделит 1000 изображений на каждые 5 эпох), и модель будет обучена 20 раз с использованием всего обучающего набора данных в 100 эпохах
Спасибо

Процесс обучения бывает ручным и автоматическим и выглядит обычно так. Нейросети дают на вход разные данные, она анализирует их, а потом ей сообщают, каким должен быть правильный ответ. Сеть устроена так, что будет «стремиться» подогнать веса синапсов, чтобы выдавать верные результаты.

Стохастический градиентный спуск — это алгоритм обучения, который имеет ряд гиперпараметров.
Два гиперпараметра, которые часто путают новичков, — это размер пакета и количество эпох. Они оба являются целочисленными значениями и, кажется, отражают одно и то же.
Подчеркнём разницу между партиями и эпохами в стохастическом градиентном спуске.
В чем разница между Партией и Эпохой в Нейронной сети?

Подумайте о пакете как о цикле, повторяющем одну или несколько выборок и делающем прогнозы. В конце пакета прогнозы сравниваются с ожидаемыми выходными переменными и вычисляется ошибка. Исходя из этой ошибки, алгоритм обновления используется для улучшения модели, например, для перемещения вниз по градиенту ошибки.

Количество эпох может быть задано целочисленным значением от единицы до бесконечности. Вы можете запускать алгоритм так долго, как вам нравится, и даже останавливать его, используя другие критерии, помимо фиксированного числа эпох, такие как изменение (или отсутствие изменений) ошибки модели с течением времени.

Для эффективного обучения нужно много повторений. Иначе нейронная сеть будет работать неточно — ведь входные данные могут серьезно различаться, а она окажется натренирована только на один возможный вариант. Поэтому обучение проводится в несколько итераций и эпох.

Переобучение и другие ошибки

В протоколе Ethereum (ETH), например, эпоха — это время, необходимое для завершения 30 000 блоков на блокчейне. Продолжительность эпохи определяется темпом, с которым обрабатываются транзакции и достигаются соглашения, однако темп остается равномерным, с продолжительностью эпохи примерно в 100 часов.

В основе искусственной нейронной сети лежит устройство нервной ткани человека. Она состоит из нервных клеток, связанных между собой длинными отростками. В клетках происходят нервные импульсы, они передаются по отросткам в другие клетки. Таким образом нервная ткань обрабатывает или генерирует информацию. Сами импульсы очень сложно расшифровать: это не понятные человеку данные, а набор слабых электрических токов, которые нейроны воспринимают как информацию.

Перцептроны — Это классические нейронные сети, изначально однослойные, позже многослойные. Сейчас используются в основном для вычислений. Сверточные нейронные сети — Это многослойные сети, которые состоят из чередующихся сверточных и субдискретизирующих слоев и предназначены специально для работы с изображениями. Рекуррентные нейронные сети Их особенность в возможности последовательно обрабатывать цепочки данных и «запоминать» предыдущую информацию. Поэтому их применяют для работы с изменяющимися сведениями или длинными цепочками данных, например рукописными текстами. Генеративные нейронные сети Предназначены для создания контента. Иногда используются генеративно-состязательные нейросети — связка из двух сетей, где одна создает контент, а другая оценивает его качество.

ЧИТАТЬ ТАКЖЕ:  Как нейросети работают с фото

Одна эпоха означает, что у каждой выборки в обучающем наборе данных была возможность обновить внутренние параметры модели. Эпоха состоит из одного или нескольких пакетов. Например, как указано выше, эпоха, имеющая один пакет, называется алгоритмом обучения пакетному градиентному спуску.

После каждой эпохи точность либо улучшается, либо иногда нет. Например, эпоха 1 достигла точности 94, а эпоха 2 достигла точности 95. После окончания эпохи 1 мы получаем новые веса (т. е. обновленные после последней партии эпохи 1). Означает ли это, что новые веса, используемые в эпоху 2, начинают улучшать его с 94% до 95%? Если да, то является ли это причиной того, что какая-то эпоха получает более низкую точность по сравнению с предыдущей эпохой из-за обобщения весов для всего набора данных? Вот почему мы получаем хорошую точность после прохождения стольких эпох благодаря лучшему обобщению?

В датасете базовые параметры модели изменяются с каждой эпохой. В результате алгоритм обучения с пакетным градиентным спуском получил название каждой пакетной эпохи. Размер партии обычно равен 1 или больше, и это всегда целое значение в номере эпохи. Альтернативно его можно представить в виде параметра for-loop с определенным числом, причем маршрут каждого цикла проходит через весь массив обучающих данных.

Число эпох традиционно велико, часто сотни или тысячи, что позволяет алгоритму обучения работать до тех пор, пока ошибка модели не будет достаточно сведена к минимуму. Вы можете увидеть примеры количества эпох в литературе и в учебных пособиях, установленных на 10, 100, 500, 1000 и более.

Стохастический градиентный спуск — это итеративный алгоритм обучения, который использует обучающий набор данных для обновления модели.
Размер пакета — это гиперпараметр градиентного спуска, который управляет количеством обучающих выборок для обработки до обновления внутренних параметров модели.
Количество эпох — это гиперпараметр градиентного спуска, который управляет количеством полных проходов через обучающий набор данных.

Как устроена нейросеть

Большое вам спасибо за то, что написали простым для понимания способом. Кроме того, попробуйте добавить фотографии, график или схематическое представление для представления вашего текста. Как я видел здесь, вы привели один пример, он делает многие вещи очень ясными. В каком-то предыдущем посте вы также добавили график…

Но с помощью программы Word2Vec у вас также есть гиперпараметры Эпох, итераций и размера пакета, которые вы можете установить… Не кажется ли вам, что они также влияют на результаты Word2Vec.
Как я теперь понял, набор, передаваемый как пакет, содержит одно предложение. Однако я удивлен, что количество итераций не меняется, если я изменяю количество эпох и размеры пакетов, но не определяю итерации конкретно. Ты знаешь, как это работает?

Каждый шаг включает использование модели с текущим набором внутренних параметров для прогнозирования некоторых выборок, сравнение прогнозов с реальными ожидаемыми результатами, вычисление ошибки и использование ошибки для обновления внутренних параметров модели.

Привет,
обновления выполняются после завершения каждой партии. Я просто использовал один образец и дал разные размеры пакета в model.fit, почему значение меняется каждый раз. он должен быть способен принимать один размер партии, если есть только один образец, не так ли?

Нейросеть повторяет этот же принцип, но программно. Нейроны — это программные объекты, внутри которых хранится какая-то формула. Они соединены синапсами — связями, у которых есть веса: некоторые числовые значения. Веса отражают накопленную нейросетью информацию, но сами по себе, в отрыве от сети, не несут информационной ценности.

В мире искусственных нейронных сетей эпоха (англ. epoch) — это один цикл обучения на массиве данных. Обучение нейронной сети обычно занимает много эпох. Проще говоря, если мы снабжаем нейронную сеть обучающими данными в различных паттернах на протяжении более чем одной эпохи, мы ожидаем улучшения генерализации, когда даем ей свежий ненаблюдаемый вход (тестовые данные).

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь