Что такое агенты искусственный интеллект

0
14

Понятие агента в системах искусственного интеллекта Текст научной статьи по специальности «Компьютерные и информационные науки»

Похожие темы научных работ по компьютерным и информационным наукам , автор научной работы — Мелихова Оксана Аскольдовна, Вепринцева Ольга Витальевна, Чумичев Владимир Сергеевич, Джамбинов Сергей Владимирович, Гайдуков Анатолий Борисович

In connection with the global computerization of society, development of the Internet , the development and use of intelligent systems in various fields of human activity ever relevant and in demand. This explains the emergence and formation of artificial intelligence such as the theory of agents and multi-agent systems. The paper discusses the various types of agents, their characteristics and areas of use.

С точки зрения разработки приложения ИИ, будь то отдельные LLM, LLMs с цепочкой инструментов или полные агенты ИИ сталкиваются с аналогичными проблемами. Платформа агента ИИ мозаики помогает разработчикам управлять уникальными задачами создания и приложений ИИ на всех уровнях сложности.

Различия между одноагентной и мультиагентной средой достаточно расплывчаты. Конечно, понятно, что если агент решает судоку, то это одноагентная среда, а если играет в шашки, или шахматы то двухагентная (мультиагентная) среда. Шахматы являются конкретной мультиагентной средой. Проектирование агентов в мультиагентной среде имеет свои трудности: например,

В системах автоматической оценки наиболее часто реализуется двухэтапная оценка ситуации. На первом этапе происходит оценка значений каждого из параметров nt. На втором этапе производится собственно оценка ситуации S на базе имеющихся оценок для всех параметров [2; 4; 7].

Искусственный интеллект является одним из самых молодых научных направлений, тесно связанным с развитием компьютерных технологий. Сегодня научно-технический прогресс немыслим без тех результатов, которые дали человечеству исследования в области искусственного интеллекта. На основе этих исследований сформировалась и постоянно совершенствуется новая отрасль индустрии -производство интеллектуальных систем — систем, основанных на знаниях. Основными структурными элементами такого рода систем являются база знаний и механизм логических выводов. При построении систем, основанных на знаниях, одной из важных проблем является представление знаний, так как представление знаний в значительной степени определяет характеристики системы и зависит от сложности решаемых задач. Очевидно, что представление знаний для случая, когда объектом исследований является диагностика, должно отличаться от представления знаний для случая, когда объектом является проектирование, при этом выбор оптимального представления знаний одинаково важен, как для малых, так и для больших интеллектуальных систем. При проектировании модели представления знаний следует учитывать такие факторы, как однородность представления информации и простота её понимания. Однородность приводит к упрощению механизма управления логическим выводом. Представление знаний должно быть понятно экспертам и пользователям системы. В противном случае затрудняются приобретение знаний и их оценка. Для решения сложных и больших задач необходимы структурирование и модульное представление знаний [1; 2]. По своей структуре можно выделить два типа знания: декларативное знание или просто знание и императивное знание или умение. К знанию первого типа относятся сведения о фактах окружающего или внутреннего мира системы. Знание второго типа представляет собой умение системы производить определенные действия. Можно провести аналогии: между знанием первого типа и данными, а также между знаниями второго типа и программами. Знание первого типа может трансформироваться в знание второго типа, то есть система может обучаться поведению на основе описания этого поведения, и наоборот. Как правило,

ЧИТАТЬ ТАКЖЕ:  Искусственный интеллект почему плохо

ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ / МНОГОАГЕНТНАЯ СИСТЕМА / РАЦИОНАЛЬНЫЙ АГЕНТ / СИСТЕМЫ ОСНОВНЫЕ НА ЗНАНИЯХ / ДЕКЛАРАТИВНЫЕ СИСТЕМЫ / ПРОЦЕДУРАЛЬНЫЕ СИСТЕМЫ / ARTIFICIAL INTELLIGENCE / MULTI-AGENT SYSTEM / A RATIONAL AGENT OF BASIC KNOWLEDGE / DECLARATIVE SYSTEM OF PROCEDURAL SYSTEMS

Составные системы ИИ

В искусственном интеллекте необходимо четко проводить грань между рациональностью и всезнанием. Всезнающий агент знает результат своих действий, и может действовать соответствующим образом, но всезнание невозможно. У агентов есть понятие автономности, то есть, если агент больше полается на знания, которые были у него изначально, и практически не обучается новым, то такой агент считается недостаточно автономным. Рациональный агент должен быть автономным, то есть, он должен обучаться всему, что только может усвоить, чтобы изменить неправильные или неполные изначальные знания. Из этого следует, что при прошествии достаточно долгого времени нахождения в определенной среде, агент может стать независимым от априорных знаний [5; 6].

В последнее время как в области искусственного интеллекта, так и в области прикладного программирования активно используется понятие программного агента. Одним из основных факторов проявления этого интереса к нему явилось развитие сетевых технологий, в частности, связанных с Интернетом. Понятие программного агента существенно обобщает понятие объекта из области объектноориентированного программирования за счет введения дополнительных

Агенты ИИ используют средства для выполнения действий помимо создания языка, например для получения структурированных или неструктурированных данных, выполнения кода или взаимодействия с удаленными службами, например отправкой сообщения электронной почты или сообщения Slack.

Отрасль по-прежнему определяет агентов ИИ, однако она обычно понимается как система ИИ, где модель принимает некоторые или все решения по планированию в отличие от жестко закодированных логики. Эти агенты используют большие языковые модели (LLM) для принятия решений и достижения своих целей.

Основным способом достичь рационального мышления является использование рационального агента. Вообще говоря, агентом считается все, что действует, но компьютерные агенты отличаются своими уникальными атрибутами, которых нет у обычных программ. Так, например, функционировать под автономным управлением, или воспринимать свою среду, или существовать в течение продолжительного времени. Рациональный агент — это агент, который действует так, чтобы можно было достичь наилучшего результата, или в условиях неопределенности — наилучшего ожидаемого результата. В подходе к созданию искусственного интеллекта на основе мышления агент был акцентирован на формирование правильных логических выводов. То есть, основной задачей агента было формирование логической цепочки, по которой он будет следовать для достижения той или иной цели и по определенным действиям, хотя каждое действие не обязательно приведет к нужной цели. Бывают такие ситуации, в которых нет строго определенного выбора. Такой подход имеет два преимущества: во-первых, этот подход является более общим по сравнению с подходом, основанным на использовании «законов мышления», поскольку правильный выбор — это просто один из нескольких возможных механизмов достижения рациональности. Во-вторых, он является более перспективным для научной разработки по сравнению с подходами, основанными на изучении поведения или человеческого мышления, поскольку стандарт рациональности четко определен и полностью обобщен [1; 4; 6].

В связи с глобальной компьютеризацией общества, развитием сети Интернет, разработка и использование интеллектуальных систем в различных областях деятельности человека как никогда актуальны и востребованы. Этим объясняется возникновение и становление такой области искусственного интеллекта как теория агентов и многоагентных систем. В работе рассматриваются различные типы агентов, их особенности и области использования.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь