Содержание статьи
Искусственный Интеллект: Что это и какие задачи он выполняет
Обучение и развитие моделей ИИ
Кибербезопасность. Искусственный интеллект помогает различным организациям бороться с кибератаками. Он раньше всех обнаруживает попытки взлома, угрозу заражения вредоносным ПО и тут же предупреждает людей об атаке. Кроме того, ИИ может автоматически реагировать на угрозы, блокируя доступ хакеров и предотвращая утечку данных.
Искусственный интеллект — способность компьютерной системы решать задачи и выполнять действия, которые требуют разумного мышления. В каких сферах уже используют технологии ИИ, как искусственный интеллект помогает развитию бизнеса и почему у него настолько высокие перспективы в будущем, читайте в статье.
Появление решений и средств на основе ИИ означает, что все больше компаний могут воспользоваться преимуществами этой технологии для экономии средств и времени. Готовые решения, средства и ПО на основе ИИ включают в себя встроенные средства ИИ или помогают автоматизировать процесс принятия решений на основе алгоритмов.
Международные стандарты в области искусственного интеллекта представляют собой основу для ответственного и этичного использования технологий ИИ. Они охватывают такие области, как конфиденциальность, предвзятость, прозрачность и подотчетность. Придерживаясь подобных стандартов, организации могут обеспечить справедливость, прозрачность и соблюдение этических принципов в своих системах ИИ.
ИИ дает возможность воспроизводить и улучшать то, как мы воспринимаем окружающий мир и реагируем на него. Это свойство ИИ лежит в основе инноваций. ИИ основан на различных технологиях машинного обучения, которые распознают шаблоны в данных и формируют прогнозы. Он создает прибавочную стоимость для бизнеса благодаря следующим возможностям
Рассматривайте ее как дорожную карту для разумного использования ИИ по мере развития данной технологии. Система управления ИИ представляет собой структурированный способ управления рисками и возможностями, связанными с ИИ. Она включает в себя такие ключевые компоненты, как прозрачность, объясняемость и автономность, давая организациям четкие указания по использованию ИИ в соответствии с развивающимися нормативными актами (например, Законом ЕС об ИИ).
Что такое нейронные сети и как они работают?
Искусственные нейронные сети — это математические модели, обеспечивающие глубокое обучение. По своей сути они являются имитацией человеческого мозга. Состоящий из слоев взаимосвязанных узлов, называемых искусственными нейронами или перцептронами, каждый искусственный нейрон принимает входные данные, выполняет вычисления и генерирует выход. Затем полученные результаты передаются следующему слою перцептронов, создавая иерархическую структуру.
Большинство компаний сделали изучение данных своим приоритетом и вкладывают в него значительные средства. Опрос McKinsey 2021 года по ИИ показал, что количество компаний, сообщивших о внедрении ИИ по крайней мере в одной функции, увеличилось до 56 % по сравнению с 50 % годом ранее. Кроме того, 27% респондентов сообщили, что по крайней мере 5% доходов могут быть связаны с искусственным интеллектом, по сравнению с 22% годом ранее.
Обеспечение ответственного подхода к разработке ИИ имеет решающее значение для его безопасного, надежного и этичного развития. Но как можно решить вопросы прозрачности и объяснимости в контексте ответственного использования ИИ? Подробно данные понятия рассмотрены в нашей статье о создании ответственного искусственного интеллекта.
По своей сути машинное обучение — это способность компьютерной системы обучаться на основе данных, не будучи явно запрограммированной. Одним из примеров является фильтрация спама в электронной почте. Обнаруживая схожие закономерности в спам-сообщениях, почтовые платформы могут узнать, какие письма полезны, а какие следует держать подальше от папки «Входящие».
Искусственный интеллект, способный синтезировать, анализировать и действовать на основе огромных объемов данных за считанные секунды, является чрезвычайно мощным. Как и в случае с любой другой мощной технологией, очень важно ответственно подходить к ее внедрению, чтобы максимально использовать ее потенциал и при этом минимизировать негативные последствия.
Анализируя и интерпретируя язык, NLP позволяет компьютерам извлекать полезную информацию, отвечать на вопросы и вести беседу. Например, виртуальные помощники вроде Alexa могут понимать и предоставлять информацию о температуре на улице, заголовках новостей или среднем весе косатки.
Использование чат-ботов для общения с покупателями. Чат-боты используют лингвистическую обработку, чтобы анализировать вопросы покупателей и предоставлять ответы и информацию. Чат-боты умеют обучаться и со временем начинают приносить все большие преимущества.
Транспорт. Когда мы говорим об интеграции ИИ и транспорта, то подразумеваем автономные транспортные средства. К примеру, автомобили-беспилотники или беспилотные электропоезда. Управление таким автономным транспортным средством полностью автоматизировано и осуществляется без водителя/машиниста при помощи оптических датчиков, радиолокации и компьютерных алгоритмов. Также технологии искусственного интеллекта используют в сфере транспортного обслуживания. К примеру, чтобы эффективнее управлять трафиком, прогнозировать задержки рейсов, безопасно перевозить пассажиров и грузы.
ИИ на предприятии
Бизнес-процессы. В абсолютно любой компании найдутся процессы, которые можно автоматизировать: отправка писем клиентам, автозаполнение документов и счетов, рассылка коммерческих предложений. Роботы подсказывают сотрудникам, когда у них встреча, какому клиенту и когда нужно отправить важный документ. Они уведомляют руководителей о невыполненных подчиненными задачах и сорванных дедлайнах. Алгоритмы машинного обучения активно используют в бизнес-аналитике и маркетинге для более полного понимания своей целевой аудитории и ее предпочтений.
ИИ все шире используется в производственных операциях, что привело к появлению нового термина — адаптивный интеллект. Адаптивные интеллектуальные приложения помогают принимать более эффективные бизнес-решения за счет использования внутренних и оперативных внешних данных в реальном времени и высокомасштабируемой инфраструктуры.
Тем не менее внедрение ИИ связано с определенными трудностями. Лишь немногие компании задействуют полный потенциал ИИ, и тому есть несколько причин. Например, если они не используют облачные вычисления, проекты машинного обучения часто требуют больших вычислительных ресурсов. Они также сложны в создании и требуют опыта, который пользуется большим спросом, но его не хватает. Знание того, когда и где включать эти проекты, а также когда обращаться к третьей стороне, поможет свести к минимуму эти трудности.
Чтобы повысить точность этих моделей, инженер будет передавать данные в модели и настраивать параметры до тех пор, пока они не достигнут заданного порога. Эти потребности в обучении, измеряемые сложностью модели, растут в геометрической прогрессии с каждым годом.
Например, при обучении на непроверенных данных искусственный интеллект может копировать негативные предрассудки о расе, религии, воспитании и других характеристиках человека. Такие случаи могут стать потенциально опасными, если искусственный интеллект будет использоваться в здравоохранении, подборе персонала, юриспруденции и других сферах, ориентированных на человека.
Технология искусственного интеллекта — важный ресурс для бизнеса. Интеграция ИИ в механизмы и системы позволяет автоматизировать рутинные, трудоемкие или сложные процессы, повысить их точность и производительность. В отличие от человека искусственный интеллект умеет не только обрабатывать, но и интерпретировать колоссальные объемы данных за очень короткое время. Кроме прочего, всевозможные системы и роботы на базе ИИ способны работать в режиме 24/7, не снижая эффективности. Их можно дообучать, совершенствовать и интегрировать с другими системами.