Что подавать нейросети на вход

0
18

Нейронные сети для трейдеров

· Выходной слой, в котором вычисляются выходные параметры, ассоциирующиеся с состоянием каждого нейрона выходного слоя. Сюда поступает информация, которую мы хотели бы предсказать. Например, это может быть будущий возврат рынка в %, волатильность, ликвидность и т.д.

Хочу привести такую аналогию обучения нейронной сети для трейдеров. Надеюсь, она будет вам более понятной, если нет понимания математического аппарата. Представьте, что вы придумали стратегию, у которой очень и очень много параметров. Естественно, вам хотелось бы подобрать наиболее оптимальные параметры для стратегии (как коэффициенты W и b в случае нейросети). Что значит оптимальные? Такие, чтобы максимизировали прибыль или минимизировали просадку или максимизировали коэффициент Шарпа — смотря какой критерий выберете. Далее вы начинаете перебирать эти параметры (обучать, в случае нейронной сети). Можно перебирать с помощью «грубой силы» — т.е. перебирать все возможные комбинации параметров. Но если таких параметров очень много, то вам просто не хватит вычислительной мощности вашей машины и перебор займёт много времени. Поэтому придумано достаточно много оптимизационных алгоритмов. Например, метод градиентного спуска и его вариации или генетический алгоритм, чтобы производить поиск оптимальных параметров быстрее, жертвуя точностью.

В качестве примера, я создал полносвязанную нейронную сеть из входного, выходного и двух скрытых слоёв. Во входном слое я сгенерировал 45 нейронов — туда будем подавать дневные изменения цен S&P 500 за последние 15 дней, значение индикатора SMA за последние 15 дней и значение индикатора RSI за последние 15 дней. Выходной слой состоит из 1 нейрона и будет хранить предсказанное процентное изменение S&P 500 на следующий день. Скрытые слои содержат по 512 нейронов. Обучим нейронную сеть на данных с октября 2019 года по июнь 2019 г. и проверим точность обученной нейронной сети на данных с июля 2019 года по сентябрь 2019 г.

Почему бы тоже самое не сделать с графиком цен? Наколотить скриншоты графика цены перед ростом, и наоборот. Поскольку на изображении только два цвета (черный и белый), да и деталей будет мало, то изображения будут весить мало, как и обрабатываться. И скормить их все нейросети, чтобы она наконец симулировала/эмулировала работу трейдера, я не перемножала цены.

У нейронной сети могут быть те же проблемы, которые возникают при оптимизации стратегий. Главная из них — переобучение. Когда всё работает очень хорошо на прошлых данных и плохо работает на данных out-of-sample. Про то, как минимизировать риск переобучения и правильно тестировать стратегии, думаю, поговорим в следующей статье.

У меня тема в открытой вкладке, на практике обычно, когда занимаюсь чём-то другим, в голову прилетит идея (чего бы ещё поэкспортировать для сетки) тут же проверяю. К сожалению, много чего из предложенного в ветке мне не понятно (не соображу, что экспортировать, как и куда потом).

ЧИТАТЬ ТАКЖЕ:  Как я буду выглядеть в аниме нейросеть

Если нейронная сеть имеет дополнительные слои между входным и выходным слоем, то они называются скрытыми, а обучение такой сети — глубоким. Дополнительные скрытые слои могут помочь нейросети определить более сложные закономерности между входными и желаемыми выходными данными.

У меня получились следующие результаты. На графике ниже показан дневной возврат S&P 500 c октября 2019 года по июнь 2019 г. (тренировочные данные) — синяя кривая. Если кривая выше нуля, то это значит, что S&P 500 в этот день вырос. Если ниже — упал.

Также я наложил оранжевую кривую на синюю. Это предсказанный нейросетью возврат рынка. По прошлой динамике S&P 500, SMA и RSI за последние 15 дней для каждого исторического момента. Точность предсказания (вырастет S&P 500 на следующий день или упадёт) составила 93%. Но это тренировочные данные. На тестовых данных с июля 2019 г. по сентябрь 2019 г. результаты получились намного скромнее:

Точность предсказания составила лишь 49%. Нейронная сеть явно переобучена. Но, учитывая простоту модели, вряд ли можно было ожидать более приемлемый результат.

ЗАКЛЮЧЕНИЕ:

Каждый слой связан с соседними слоями с помощью весовых коэффициентов и коэффициентов смещения. Распространение данных от предыдущего слоя к следующему осуществляется по следующему правилу: z = Act(Wy + b), где y — вектор данных на предыдущем слое, z — вектор данных на следующем слое, W — матрица весов перехода от предыдущего слоя к следующему, b — вектор коэффициентов смещения. Act — функция активации, необходимая для устранения линейности. Функций активации существует большое количество. Например, это может быть сигмойда:

При обучении нейросети распознаванию кота на изображениях, для нейросети готовят сет из множества изображений для обучения. В результате она без серьёзных проблем может определить на изображении любителя побегать по квартире в четыре утра.
А в сети всё чаще можно встретить статьи, как научить нейросеть определять числа и знаки на изображении.

Например, вы хотите научить предсказывать по прошлой динамике цены акции и динамике индикаторов Simple Moving Average (SMA) и Relative Strength Index (RSI) будущее изменение цены этой акции в процентах. Мы формируем данные для обучения — для каждого исторического момента времени берём данные по индикаторам и цене акции. Это будут входные данные X для нейронной сети. И для каждого исторического момента времени берём будущее изменение цены акции (мы его точно знаем, т.к. речь идёт об исторических данных). Это будут выходные данные Y нейронной сети, которые мы хотим, чтобы нейросеть научилась предсказывать. Для этих данных X и Y и будут подбираться коэффициенты W и b.

Нейросеть оперирует цифрами, поэтому любая входная и желаемая выходная информация должна быть оцифрована. Например, если это текст (новости), то нужно этот текст представить в виде массива цифр. Или, если мы пытаемся предсказать куда пойдёт рынок, вверх или вниз, то можно закодировать «вниз» нулём, а «вверх» единицей.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь