Что означает обучение нейросети

0
15

Что такое нейронная сеть

Заключение

Еще одним подвидом ML является трансферное обучение. Оно подразумевает использование знаний, полученных при решении одной задачи, для повышения эффективности работы над другой задачей. Процесс включает предварительное обучение на большом массиве данных и последующую точную настройку под специфику новой целевой задачи. Трансферное обучение в некоторых случаях позволяет существенно сэкономить время и ресурсы. Особенно оно актуально для ситуаций, когда необходимые исходные данные слишком дороги или ограничены для получения.

Традиционные методы машинного обучения требуют участия человека, чтобы программное обеспечение работало должным образом. Специалист по работе с данными вручную определяет набор соответствующих функций, которые должно анализировать программное обеспечение. Это ограничение делает создание и управление программным обеспечением утомительным и трудозатратным процессом.

Нейронные сети прямого распространения обрабатывают данные в одном направлении, от входного узла к выходному узлу. Каждый узел одного слоя связан с каждым узлом следующего слоя. Нейронные сети прямого распространения используют процесс обратной связи для улучшения прогнозов с течением времени.

Машинное обучение и нейронные сети связаны между собой, однако это все же разные области искусственного интеллекта. В первом случае речь идет о широком термине, который означает использование алгоритмов для анализа данных, обучения на их основе и прогнозирования или принятия решений. Здесь могут использоваться разные способы: статистические методы, деревья решений и т. д.

Машинное обучение (Machine Learning или сокращенно ML) — одно из самых сложных и перспективных направлений развития искусственного интеллекта (ИИ). Фактически оно представляет собой набор приемов, алгоритмов и методов, позволяющих ИИ учиться и решать задачи не в строгих рамках, заданных программой, а на базе постоянного совершенствования знаний и накопления опыта. Именно таким образом в течение жизни учимся и мы с вами.

Есть множество методов «тренировки» нейронных сетей, но все они основываются на двух ключевых принципах: с помощью учителя и без него. Это происходит точно так же, как и у человека: можно приобретать новые знания под руководством наставника, который подскажет и скорректирует отдельные моменты, а можно заниматься самообразованием. В последнем случае человек опирается только на свой личный опыт и наблюдения.

Искусственный интеллект — это область компьютерных наук, которая исследует методы предоставления машинам возможности выполнять задачи, требующие человеческого интеллекта. Машинное обучение — это метод искусственного интеллекта, который дает компьютерам доступ к очень большим наборам данных для дальнейшего обучения. Программное обеспечение для машинного обучения находит шаблоны в существующих данных и применяет эти шаблоны к новым данным для принятия разумных решений. Глубокое обучение — это разновидность машинного обучения, в котором для обработки данных используются сети глубокого обучения.

После первого этапа из популяции выбираются нейросети, успешнее всего справившиеся с задачей. Они используются для создания следующего поколения нейронных сетей. При этом применяются механизмы, аналогичные живой природе — скрещивание и мутации. Новое поколение снова принимается за решение задачи и цикл повторяется. Процесс идет до тех пор, пока не будет достигнут заданный критерий остановки (скажем, достижение определенной точности).

Сервисы рекомендаций

Скрытые слои получают входные данные от входного слоя или других скрытых слоев. Искусственные нейронные сети могут иметь большое количество скрытых слоев. Каждый скрытый слой анализирует выходные данные предыдущего слоя, обрабатывает их и передает на следующий слой.

Нейронные сети могут анализировать человеческую речь независимо от ее речевых моделей, высоты, тона, языка и акцента. Виртуальные помощники, такие как Amazon Alexa и программное обеспечение для автоматической транскрипции, используют распознавание речи для выполнения следующих задач:

Сервисы глубокого обучения AWS используют возможности облачных вычислений, чтобы вы могли масштабировать свои нейронные сети глубокого обучения с меньшими затратами и оптимизировать их для повышения скорости. Вы также можете использовать подобные сервисы AWS для полного управления конкретными приложениями глубокого обучения:

ЧИТАТЬ ТАКЖЕ:  Искусственный интеллект фильм о чем фильм

Как видно из названия, в алгоритме используются приемы, характерные для поведения генов живых организмов. В начале процесса создается случайная популяция нейросетей, каждая из которых имеет случайно заданные параметры. Далее она подвергается естественному отбору, успешность которого определяется поставленной задачей (например, классификацией изображений).

Вне зависимости от используемого принципа обучение нейросетей состоит из двух ключевых этапов. На первом происходит тренировка — нейронная сеть учится, выстраивает необходимые связи, регулирует веса узлов. Но как мы проверим, насколько эффективно она это делает? Как и в случае с обычными учениками, нейросеть должна пройти экзамен. Естественно, вопросы на этом экзамене должны отличаться от тех, которые были использованы при тренировке, чтобы исключить вариант, что сеть просто «запомнила» правильный ответ. Это и есть второй этап, который называется тестированием.

Обучение нейронной сети — это процесс, в ходе которого модель искусственного интеллекта (в данном случае нейронная сеть) учится выполнять определенные задачи на основе предоставленных ей данных. Это может быть, например, распознавание образов или предсказание тенденций.

Что такое глубокое обучение в контексте нейронных сетей?

Нейронные сети — это подмножество машинного обучения, которое использует архитектуру, вдохновленную биологическими нейросетями. Это означает, что они состоят из слоев «нейронов», которые передают и преобразуют информацию. Они хорошо подходят для обработки сложных данных (изображения, звук).

Существует достаточно много способов обучения нейронных сетей. Однако все они сводятся к двум основным концепциям: с помощью учителя и без него. В этой связи снова можно провести аналогию с мозгом человека. Люди также способны приобретать опыт или с наставником, способным прочитать курс лекций, направлять и указывать верный путь к решению задачи, или самостоятельно, ориентируясь лишь на собственные наблюдения и полученный опыт. Рассмотрим оба этих принципа более подробно.

При погружении в мир нейронных систем мы обнаруживаем, что существует множество архитектур, отражающих их разнообразие и способности. Выделяются два ключевых типа: простые и глубокие нейросети. Оба вида имеют свои преимущества и ограничения. Чтобы получить хороший результат, важно научиться находить баланс между ними.

Обучение нейронной сети — это процесс обучения нейронной сети выполнению задачи. Нейронные сети обучаются путем первичной обработки нескольких больших наборов размеченных или неразмеченных данных. На основе этих примеров сети могут более точно обрабатывать неизвестные входные данные.

Нейронные сети помогают компьютерам принимать разумные решения с ограниченным участием человека. Они могут изучать и моделировать отношения между нелинейными и сложными входными и выходными данными. Например, нейронные сети могут выполнять следующие задачи.

В эпоху информационных технологий и научных открытий для решения сложных задач все чаще применяется искусственный интеллект. Среди множества его инструментов и методов особое место занимают нейронные сети — интеллектуальные роботы, имитирующие работу человеческого мозга. Однако для того чтобы нейросети смогли решать сложные задачи, их сначала необходимо обучить.

Только что мы рассмотрели архитектуру базовой нейросети. Глубокие нейронные сети (сети глубокого обучения) обычно имеют много скрытых слоев, состоящих из миллионов связанных между собой искусственных нейронов. Количество связей одного нейрона с другими называют весом. Вес является положительным, если данный узел возбуждает другой, или отрицательным, если, наоборот, происходит подавление узла. Узлы с большим весом оказывают более сильное влияние на другие. Веса нейросети настраиваются в процессе обучения. Они определяют, какие данные будут учитываться при получении итогового результата, и какой вклад внесет тот или иной узел на выводы.

Нейронная сеть – это метод в искусственном интеллекте (ИИ), который учит компьютеры обрабатывать данные таким же способом, как и человеческий мозг. Это тип процесса машинного обучения, называемый глубоким обучением, который использует взаимосвязанные узлы или нейроны в слоистой структуре, напоминающей человеческий мозг. Он создает адаптивную систему, с помощью которой компьютеры учатся на своих ошибках и постоянно совершенствуются. Таким образом, искусственные нейронные сети пытаются решать сложные задачи, такие как резюмирование документов или распознавание лиц, с более высокой точностью.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь