Содержание статьи
Методы искусственного интеллекта — особенности каждого подхода
Машинное обучение
Рост алгоритма ИИ машинного обучения связан с возросшим потоком данных. Кроме этого, встаёт вопрос — что именно изучается на основе этих данных? Поэтому, при машинном обучении важен тип используемой модели, который может определить — как работает и на какой основе обучается ваш искусственный интеллект?
Искусственные нейронные сети — это математические модели, обеспечивающие глубокое обучение. По своей сути они являются имитацией человеческого мозга. Состоящий из слоев взаимосвязанных узлов, называемых искусственными нейронами или перцептронами, каждый искусственный нейрон принимает входные данные, выполняет вычисления и генерирует выход. Затем полученные результаты передаются следующему слою перцептронов, создавая иерархическую структуру.
Анализируя и интерпретируя язык, NLP позволяет компьютерам извлекать полезную информацию, отвечать на вопросы и вести беседу. Например, виртуальные помощники вроде Alexa могут понимать и предоставлять информацию о температуре на улице, заголовках новостей или среднем весе косатки.
В методах ИИ данной группы рассматривается коллективный искусственный интеллект. Многоагентная система включает в себя агентов и среду. Агентами могут стать роботы, человек или даже группа людей. Принцип действия многоагентной модели ИИ в том, что задача делится на части, которые распределяются между агентами. Кроме этого, в МАС даже можно создать канал передачи знаний.
По своей сути искусственный интеллект — это способность машины или компьютерной системы выполнять задачи, для которых обычно требуется человеческий интеллект. Это включает в себя программирование систем для анализа данных, обучения на основе опыта и принятия разумных решений — под руководством человека. Наиболее известной формой ИИ являются виртуальные помощники, такие как Siri или Alexa, но существует множество разновидностей данной технологии.
Однако, когда на сцену вышел генеративный ИИ, такой как ChatGPT, его удивительная способность имитировать человеческие реакции и доступность для каждого, у кого есть компьютер, неожиданно вывели дискуссии о машинном обучении и соблюдении этических норм в публичную сферу. Такие понятия, как глубокое обучение, NLP и нейронные сети, просочились в повседневные профессиональные и даже личные разговоры.
Эволюционное или многоагентное моделирование
В последние годы искусственный интеллект на стадии подъема, он постепенно внедряется в разные сферы нашей жизни. Это важно для развития компании — оптимизация рабочих процессов, повышение эффективности и увеличение прибыли. ИИ — это обширная тема, он содержит много задач и методов, разные науки, может обучаться. Поэтому, как и в других технологиях, не стоит использовать один алгоритм ИИ для решения всех задач. Каждый метод искусственного интеллекта работает на решение своих проблем и задач.
Искусственный интеллект, способный синтезировать, анализировать и действовать на основе огромных объемов данных за считанные секунды, является чрезвычайно мощным. Как и в случае с любой другой мощной технологией, очень важно ответственно подходить к ее внедрению, чтобы максимально использовать ее потенциал и при этом минимизировать негативные последствия.
По сути ИИ — это программа с набором алгоритмов (кодов, баз знаний), которая может обучаться. Принцип работы искусственного интеллекта схож с работой любой другой компьютерной программы -— принятие данных, это может быть например: просто речь, текст или изображение, их анализ и выдача результата. От обычной программы ИИ отличается структурой — искусственная нейросеть, после её создания программистом на компьютере, проходит стадию обучения. Искусственный интеллект включает в себя не только IT-технологии, но и другие науки, например: математику, биологию, психологию, кибернетику.
Например, в рамках базового машинного обучения компьютер может научиться распознавать птиц на фотографиях. Обучаясь на фотографиях птиц и других животных или предметов, машина учится различать их, знакомясь с уникальными птичьими особенностями, такими как крылья и клювы.
Как же работает машинное обучение? Оно начинается с данных. С большого количества данных. Алгоритмы машинного обучения обучаются на огромных массивах данных, которые они анализируют, чтобы выявить закономерности, взаимосвязи и тенденции. Затем такие закономерности можно использовать для прогнозирования или принятия решений на основе новых, еще не изученных данных.
Чаще этот метод ИИ узкой направленности. Эволюционное моделирование применяется, когда поисковое пространство большое, сложноустроенное. То есть, простые программы на компьютере не способны решить данную проблему. Например, робот-медработник, там применяется алгоритм искусственного интеллекта с медицинской спецификой. Эта методика используется с группой нечётной логики или экспертной.