Содержание статьи
Искусственный интеллект не обладает интуицией, которая есть у исследователей»
Предприниматели
Воспитатели вносят неоценимый вклад в развитие ребенка с первых лет его жизни. Они играют важную роль в формировании эмоционального интеллекта, социальных навыков и воспитании чувства сопричастности. Через игры, общение и творческие задания дети учатся понимать себя и других, работать в команде и выражать свои чувства конструктивно.
— По-разному. Например, в онлайн-магистратуре «Экономический анализ» мы используем технологии, которые позволяют организовать дистанционное обучение, а в наши курсы внедряем много современных методов. У нас есть курсы по применению машинного обучения в экономике: там мы учим, какие экономические задачи можно решать, анализируя большие данные, с помощью каких методов их можно обрабатывать, изучаем обработку текстов, различные методы классификации, регрессии и т.д.
С другой стороны, они также могут попробовать разными методами получить один и тот же результат, проверить, насколько он устойчив. И хорошо, когда результаты сходятся при разных методах, что показывает в том числе робастность в исследовании (свойство результатов исследования быть надежными и стабильными при изменении методов анализа, выборок или других условий эксперимента. — Ред.). То есть если исследователь знает, как применять искусственный интеллект, и применяет его, это ему только в плюс.
С другой стороны, мы можем говорить и о новшествах при обработке этого огромного количества разных данных. Появляются механизмы, которые позволяют не только переработать текстовую информацию в количественную, но и найти какие-то взаимосвязи между этими данными. Это, конечно же, можно делать и в эконометрическом исследовании, но здесь используются другие подходы, которые в каком-то смысле более гибкие, потому что мы можем не создавать какие-то жесткие формы взаимосвязи, как в эконометрике, а пытаться получить эту форму из данных.
— Некоторые задачи, особенно когда у вас большие массивы данных, человеку обработать вручную очень сложно. Нужно использовать машинные методы и алгоритмы — не только из-за времени, но в том числе и из-за масштабов исследований. Исследователи, которые прибегают к помощи машин, конечно, имеют преимущество, потому что они приобретают разные возможности, которые позволяют им решить задачу проще и быстрее.
Факультеты экономических и компьютерных наук ВШЭ реализуют образовательную программу бакалавриата «Экономика и анализ данных» с целью подготовки высококлассных специалистов в области математики, программирования и анализа данных, которые имеют при этом фундаментальные знания в сфере экономики и финансов.
Этот курс для нас записывали сотрудники Банка России с учетом реальных задач, которые они в рамках своей деятельности уже решают. Сейчас в Банке России очень много таких задач, где они изучают семантику текстов, новостные индексы, социальные сети, смотрят, как на политику ЦБ реагирует население, тем самым прогнозируют инфляционные ожидания.
В мире образования, учителя и преподаватели играют роль, далеко выходящую за рамки простой передачи знаний. Они видят и развивают потенциал каждого ученика, адаптируя обучение так, чтобы оно отвечало индивидуальным особенностям, интересам и темпу изучения каждого человека. Это искусство, требующее не только глубоких знаний предмета, но и умения вдохновлять, мотивировать и поддерживать учеников на их пути к обретению знаний.
Творческие профессии
— Навыки работы с современными средствами должны быть, их надо развивать. Мы, наше поколение, сейчас такого навыка не имеем, и мы тоже его осваиваем. В Вышке сейчас проходит повышение квалификации преподавателей: нас учат использовать искусственный интеллект в образовательном процессе, и в том числе нас активно мотивируют применять его в своих курсах. Одно из заданий наших обучающих курсов — предложить, как мы можем использовать искусственный интеллект так, чтобы наш курс был более современен, шел в ногу со временем и обучал студентов использовать новые технологии.
— Здесь, кстати, вот в чем проигрывает искусственный интеллект человеку. Во-первых, он сейчас пока вообще далеко не совершенен и не идеален — какие-то рутинные задачи можно ему делегировать, например генерировать тексты, составлять планы презентаций, конспект лекций и др. Но при этом нужно помнить, что не каждую задачу ему можно поручить: искусственный интеллект, в отличие от человека, не обладает интуицией, которая есть у исследователей.
Проектный менеджмент — это не только о сроках и бюджетах, но и о лидерстве, умении мотивировать команду и преодолевать препятствия на пути к цели. Эффективные проектные менеджеры используют свою интуицию, опыт и межличностные навыки для решения уникальных проблем, требующих гибкости и креативности — качеств, которые ИИ еще только предстоит освоить.
— Конечно же, есть вызовы, которые нас немного сдерживают в применении этих методов. Почему, например, мы хотим параллельно использовать альтернативные методы исследований? Потому что те же нейросети — это черный ящик для нас. Часто исследователи используют уже готовые алгоритмы, мы не всегда понимаем, как они работают и насколько достоверный дают результат. Это очень хорошо прослеживается на текущих примерах чатов вроде ChatGPT, GigaChat Сбера или Yandex GPT: когда мы делаем какие-то запросы в них, информация, которая выдается, часто может быть неправдоподобной — в зависимости от словарей, на которых нейросеть обучается. Программисты называют это рисками галлюцинаций. Наша задача в том числе — уметь различить, где искусственный интеллект нагло врет, а где говорит правду.
— С одной стороны, сервисы искусственного интеллекта называют учебными ассистентами, и часто их используют именно как помощников: они помогают вам сортировать почту по тематике, обрабатывать большие массивы данных, составлять планы работ и т.д. Но, с другой стороны, если юные студенты с самого начала будут использовать труд этих помощников, сами не попробовав хотя бы написать письмо, составить план, решить задачу, мне кажется, что какие-то навыки, soft skills и даже иногда hard skills, у них будут утеряны. Все-таки, прежде чем пользоваться этими помощниками, надо самому пройти школу жизни, сначала самим научиться делать даже рутинные вещи, чтобы в том числе потом контролировать то, что вам будет выдавать искусственный интеллект.
Первое, что нужно признать: ИИ действительно научился делать впечатляющие вещи. Он может обыграть чемпиона мира по шахматам, распознать ваше лицо среди тысячи других (порой даже быстрее, чем ваша собственная мать) и даже создать произведения искусства, которые заставляют задуматься, действительно ли для творчества нужна душа.