Содержание статьи
Искусственный интеллект в медицине и здравоохранении
Применение и польза искусственного интеллекта в медицине
В процессе обучения входные нейроны получают данные, обрабатывают их на внутреннем слое нейросети, а на выход поступают результаты. Если полученный результат в процессе обучения не устраивает исследователей, они меняют вес соединений и заново обучают сеть. При этом успешность процесса и достоверность результатов зависит от количества входных данных – чем их больше, тем лучше.
Искусственный интеллект (ИИ) сегодня находит всё большее применение в мире и область медицины вовсе не исключение. Способность ИИ радикально трансформировать процессы диагностики, ускорять создание новых лекарств и повышать качество медицинской помощи открывает огромные возможности для оптимизации сферы здравоохранения. Перед тем, как мы погрузимся в различные аспекты использования этих технологий, давайте выясним, что же такое искусственный интеллект.
Сегодня искусственный интеллект не может решать сложные медицинские задачи: он самостоятельно не придумает и не спроектирует прибор из будущего, который сможет за пару секунд отсканировать организм человека, выявить любые проблемы и назначить оптимальное лечение. Однако и нынешние возможности очень интересны для врачей, пациентов и клиник.
Уже сегодня в некоторых британских больницах применяют новый способ тестирования плода на патологии, которые сложно или невозможно выявить другими средствами. Система работает на основе искусственного интеллекта, и в нее заложено более 350 тысяч снимков плодов с теми или иными отклонениями.
Современная статистика показывает, что врачи часто допускают ошибки при анализе снимков КТ, что становится причиной назначения неверного лечения. Новый проект от израильских разработчиков призван помочь правильно диагностировать инсульт – система сравнивает снимок мозга пациента со снимками сотен тысяч других людей для выявления и подтверждения отклонений.
В 2017 году Институт развития интернета начал работу над созданием ИИ, предназначенного для постановки диагноза по снимкам УЗИ, МРТ и т.д. В 2023 году программы на основе ИИ были внедрены в эксплуатацию в 58 регионах нашей страны. В целом, за прошлый год субъекты Федерации приобрели 106 медицинских изделий с ИИ.
Как работают нейронные сети в медицинской сфере?
Стоит отметить, что на настоящий момент компьютеру не доступно моделирование сложных процессов высшей нервной системы человека: творчество, эмоции и т.д. Все это может возникнуть со временем и с появлением более сильного искусственного интеллекта. Однако компьютеры уже научились решать задачи так называемого «слабого искусственного интеллекта». Машина может работать по заранее установленным человеком правилам.
Не стоит путать обычные программы с ИИ. Первые создаются программистами, которым не нужно обладать информацией обо всех зависимостях между входными параметрами и ответом – полученным результатом. Такие программные продукты прекрасно справляются со многими задачами, в том числе медицинскими – системы используются для расчетов статистик, формирования реестров и т.д.
Внедрение технологий искусственного интеллекта в медицине – один из главных трендов в мире здравоохранения. ИИ и нейросети способны в корне изменить всю мировую медицину: преобразовать систему диагностики, способствовать разработке новых лекарственных препаратов, повысить качество медуслуг в целом и снизить расходы. В перспективе возможности ИИ практически безграничны. Однако прежде чем рассматривать особенности использования технологии в сфере здравоохранения, необходимо разобраться в том, что представляет из себя ИИ.
Компания Google также занимается разработкой собственных медицинских систем ИИ. Проект DM Health сотрудничает с офтальмологической клиникой Moorfields Eye Hospital. ИИ используют для анализа анонимных глазных снимков и выявления первичных симптомов слепоты.
Практики и опыта врача может быть недостаточно для того, чтобы своевременно выявить ту или иную проблему в организме человека, тогда как нейронная сеть, обладающая доступом к огромному объему данных, передовой научной литературе и миллионам историй болезней, сможет быстро классифицировать любой случай, соотнести его со схожими проблемами у других пациентов и предложить план лечения.
Искусственный интеллект нужен там, где невозможно задать четкие правила и алгоритмы. К примеру, как простая программа может на рентгенологическом снимке выявить наличие патологии? Для решения такой задачи машина должна не проводить расчет по заданным формулам, а самостоятельно выявить формулу по эмпирическим данным, чтобы научиться распознавать болезни. Разработчики при этом работают в первую очередь над подготовкой данных и обучением системы.