Чем отличается искусственный интеллект и машинное обучение

0
19

В чем разница между искусственным интеллектом и машинным обучением

Как организации могут использовать искусственный интеллект и машинное обучение?

Следовательно, лучше рассматривать то, что делает глубокое обучение уникальным в рамках машинного обучения, вместо противопоставления глубокого обучения и машинного обучения. В широком смысле, особенности, которые делают глубокое обучение уникальным, включают структуру алгоритма нейронной сети, меньшую необходимость в человеческом вмешательстве и более обширные требования к данным. Давайте рассмотрим их по отдельности:

С другой стороны, цель машинного обучения – заставить машину анализировать большие объемы данных. Машина будет использовать статистические модели для выявления закономерностей в данных и получения результата. Результат имеет соответствующую вероятность правильности или степень достоверности.

ИИ и его многочисленные подполе остаются актуальными, и чем быстрее мы адаптируемся к этим изменениям, тем быстрее сможем в полной мере использовать их возможности и применить их в мире ИТ и решений для обслуживания и прогнозной аналитики. Так что, пожалуйста, больше никаких страшилок. Специалисты по данным уже выяснили, что сценарии с Скайнетом, Терминаторами и апокалипсисом Матрицы не произойдут в ближайшее время!

Наконец, глубокое обучение требует значительно больше данных, чем стандартные алгоритмы машинного обучения. Машинное обучение часто работает с тысячами точек данных, тогда как глубокое обучение может работать с миллионами. Из-за своей сложной многослойной структуры системы глубокого обучения нуждаются в большом наборе данных, чтобы уменьшить или устранить колебания и делать качественные интерпретации.

Во-вторых, модели глубокого обучения требуют гораздо меньше человеческого вмешательства, чем их обычные аналоги в машинном обучении. Например, ИИ для автономного автомобиля будет иметь возможность распознавать дорожные знаки без ручного вмешательства инженера-программиста, также известного как извлечение признаков.

Машинное обучение – это особая отрасль искусственного интеллекта (ИИ). Машинное обучение имеет ограниченную область применения и направленность по сравнению с искусственным интеллектом. Искусственный интеллект включает несколько стратегий и технологий, выходящих за рамки машинного обучения.

Прежде чем узнать о различиях между глубоким обучением и машинным обучением, важно понять, что алгоритмы глубокого обучения и машинного обучения не являются противоположными концепциями. Вместо этого алгоритмы глубокого обучения фактически являются алгоритмами машинного обучения.

Как уже упоминалось, ИИ относится к машинам, которые могут имитировать когнитивные навыки человека. Нейронные сети, с другой стороны, представляют собой сеть искусственных нейронов или узлов. Они отдаленно вдохновлены биологическими нейронными сетями, которые составляют человеческий мозг.

ЧИТАТЬ ТАКЖЕ:  Как нейросеть видит слова

ИИ против машинного обучения

Модели глубокого обучения обычно более точны, поскольку объем данных для обучения увеличивается, хотя стандартные модели машинного обучения, такие как SVM / Naive Bayes / Classified Model, перестают улучшаться после достижения точки насыщения. Модели глубокого обучения масштабируются лучше с увеличением доступной информации.

Решения в области машинного обучения требуют набора данных из нескольких сотен точек данных для обучения, а также достаточной вычислительной мощности для работы. В зависимости от приложения и сценариев использования может быть достаточно одного инстанса сервера или небольшого кластера серверов.

Искусственный интеллект находит применение во всех отраслях. Искусственный интеллект можно использовать для оптимизации цепочек поставок, прогнозирования спортивных результатов, улучшения сельскохозяйственных результатов и персонализации рекомендаций по уходу за кожей.

Мы уже говорили о том, что нейронные сети и глубокое обучение не являются полностью независимыми концепциями. Когда мы говорим о глубоком обучении, мы имеем в виду “глубину” слоев и узлов в нейронной сети. Таким образом, нейронная сеть, состоящая из более чем трех слоев (включая входной и выходной), считается алгоритмом глубокого обучения.

Создание продукта искусственного интеллекта, как правило, является более сложным процессом, поэтому многие люди выбирают готовые решения искусственного интеллекта для достижения своих целей. Эти решения, как правило, созданы после многих лет исследований, и разработчики предоставляют их для интеграции с продуктами и услугами через API.

В рамках машинного обучения методы делятся на две большие категории: обучение под руководством и обучение без наблюдения. Алгоритмы машинного обучения под наблюдением учатся решать проблемы, используя значения данных, помеченные как ввод и вывод. Обучение без наблюдения носит скорее исследовательский характер и направлено на выявление скрытых закономерностей в немаркированных данных.

Машинное обучение — это подполе искусственного интеллекта. Глубокое обучение — это подполе машинного обучения, а нейронные сети составляют основу алгоритмов глубокого обучения. Количество слоев узлов, или глубина, нейронных сетей отличает одну нейронную сеть от алгоритма глубокого обучения, который должен иметь более трех слоев.

Если вы хотите использовать искусственный интеллект или машинное обучение, начните с определения проблем, которые вы хотите решить, или исследовательских вопросов, которые хотите изучить. Зная проблемное пространство, вы сможете определить подходящую технологию искусственного интеллекта или машинного обучения для ее решения. Перед началом обучения важно учитывать тип и размер доступных обучающих данных и предварительно обработать их.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь