Содержание статьи
Глубокое обучение и машинное обучение в Машинном обучении Azure
Аналитика текста
Компании используют глубокое обучение для анализа текста, чтобы обнаруживать торговлю инсайдерской информацией и обеспечивать соответствие требованиям законодательства. Еще один распространенный пример — мошенничество в области страхования: машинный анализ текста часто используется для анализа больших объемов документов, чтобы распознать случаи возможного мошенничества, выдаваемые за страховой случай.
Теперь, когда получены общие сведения о машинном обучении и глубоком обучении, давайте сравним эти два метода. При машинном обучении алгоритму необходимо сообщить, как выполнять точный прогноз, используя дополнительные сведения (например, путем получения данных). В случае глубокого обучения алгоритм сможет обучиться, как создавать точный прогноз путем самостоятельной обработки данных с помощью структуры искусственных нейронных сетей.
Во-первых, традиционные алгоритмы машинного обучения имеют относительно простую структуру, включая линейную регрессию или модель решающего дерева. В то время как модели глубокого обучения основаны на искусственной нейронной сети. Эти нейронные сети имеют много слоев и (как и человеческий мозг) сложны и переплетены через узлы (аналог нейронов человека).
Другой вывод заключается в том, что важно развеять путаницу вокруг нейронных сетей и глубокого обучения, а также машинного обучения и глубокого обучения. Необходимо помнить, что глубокое обучение — это просто система нейронных сетей с более чем тремя слоями, и алгоритмы глубокого обучения фактически являются алгоритмами машинного обучения.
Некоторые из наиболее распространенных применений глубокого обучения проводятся в следующих абзацах. В Машинное обучение Azure можно использовать модель, созданную из платформы с открытым исходным кодом, или создать модель с помощью предоставленных средств.
Сверточная нейронная сеть — это особо эффективная искусственная нейронная сеть, имеющая уникальную архитектуру. Слои в ней организованы в трех измерениях: ширина, высота и глубина. Нейроны в одном слое соединяются не со всеми нейронами в следующем слое, а только с небольшой областью нейронов этого слоя. Окончательный результат сокращается до одного вектора оценки вероятности, упорядоченного по глубине в одном из измерений.
Искусственные нейронные сети
Рекуррентные нейронные сети — это широко используемые искусственные нейронные сети. Эти сети сохраняют выходные данные слоя и передают его обратно на входной слой, чтобы улучшить прогнозирование на выходе конкретного слоя. У рекуррентных нейронных сетей отличные возможности для обучения. Они широко используются для выполнения сложных задач, таких как прогнозирование временных рядов, обучение распознаванию рукописного ввода и распознавание естественной речи.
Следовательно, лучше рассматривать то, что делает глубокое обучение уникальным в рамках машинного обучения, вместо противопоставления глубокого обучения и машинного обучения. В широком смысле, особенности, которые делают глубокое обучение уникальным, включают структуру алгоритма нейронной сети, меньшую необходимость в человеческом вмешательстве и более обширные требования к данным. Давайте рассмотрим их по отдельности:
Наибольшее преимущество нейронной сети в том, что она может легко адаптироваться к изменяющимся паттернам выходных данных. Кроме того, вам не нужно корректировать её каждый раз на основе предоставляемого ввода, что может быть достигнуто с помощью контролируемого или неконтролируемого обучения.
Машинное обучение — это общий термин, обозначающий, когда компьютеры учатся на данных. Это перекресток компьютерных наук и статистики, где используются алгоритмы для выполнения конкретной задачи без явного программирования; вместо этого они распознают паттерны в данных и делают прогнозы, когда появляются новые данные.
ИИ и его многочисленные подполе остаются актуальными, и чем быстрее мы адаптируемся к этим изменениям, тем быстрее сможем в полной мере использовать их возможности и применить их в мире ИТ и решений для обслуживания и прогнозной аналитики. Так что, пожалуйста, больше никаких страшилок. Специалисты по данным уже выяснили, что сценарии с Скайнетом, Терминаторами и апокалипсисом Матрицы не произойдут в ближайшее время!
Еще один ключевой фактор заключается в том, что большинство глубоких нейронных сетей являются прямыми, то есть данные перемещаются исключительно от входа к выходу. Модели также могут обучаться с помощью обратного распространения ошибки, что позволяет им двигаться в подходящем направлении от выхода к входу.