Космос как нейросеть

0
44

Искусственный интеллект изучает космос: нейросеть помогла пущинским астрофизикам обнаружить «хаотичные» нейтронные звезды

Посадить марсоход

И вновь на помощь учёным приходит Data Science. Благодаря искусственному спутнику Красной планеты «Марс Одиссей» (Mars Odyssey) исследователи НАСА получили более 20 тысяч снимков поверхности Марса и составили его точную карту. Установленный на Mars Odyssey прибор THEMIS (Thermal Emission Imaging System) позволяет измерять температуру поверхности планеты по исходящему от неё инфракрасному излучению .

Однако искать замёрзшую воду по разнице температур достаточно сложно. Не всегда есть возможность провести соответствующие измерения и расчёты. В некоммерческом стартапе MaritimeAI сейчас ищут способ искать лёд под поверхностью Марса по обычным орбитальным снимкам. Для анализа изображений они применяют искусственные нейронные сети.

«Эпсилон» относится к лёгкому классу ракет , его грузоподъёмность примерно в пять раз меньше, чем у наших «Союзов». Японское аэрокосмическое агентство применяет «Эпсилон» для запуска небольших спутников. Состоялось четыре успешных запуска: в 2013-м, 2016-м, 2018-м и 2019-м. Модифицированные версии ракет этого типа планируется использовать для отправки исследовательских аппаратов к Луне и Марсу.

«Для первой своей статьи по этой теме мы своими глазами посмотрели 600 тысяч изображений, потом продолжили обработку и появилось уже 3,5 миллиона кандидатов, но их отсмотреть у нас уже не хватило возможностей. Зато мы смогли обучить нейронную сеть на основе своего опыта.Вызвало большое изумление, что нейросеть, проанализировав те же 600 тысяч картинок, нашла 4 пропущенных нами объекта и сработала лучше, чем наш глаз»,

Изменить эту ситуацию взялись японские конструкторы. Впервые технологии искусственного интеллекта в ракетную технику массово внедрили именно они — при создании ракеты-носителя «Эпсилон». Благодаря использованию интеллектуальных систем проверка готовности ракеты к старту происходит автоматически и практически не требует участия людей.

«Эпсилон» в этом смысле более похож на суперсовременный японский автомобиль, оснащённый мощным бортовым компьютером и интеллектуальной системой самодиагностики. Такая система не только сигнализирует о неисправности, но и выдаёт детальное описание, что именно работает не так. При этом система способна самостоятельно исправить обнаруженную неполадку, если её в принципе можно устранить с помощью программных средств без непосредственного участия человека.

На орбите Марса сейчас много искусственных спутников. Они передали на Землю огромный массив снимков марсианской поверхности. Но обнаружить скопления льда на фотографиях очень тяжело. Видны только полярные шапки льда, а основные запасы замёрзшей воды скрыты под слоем грунта.

Для того чтобы нейросеть могла анализировать изображения, её вначале следует обучить — то есть подать в неё несколько сотен изображений, на которых отмечено расположение льда под поверхностью. Фотографии для обучения, конечно, можно разметить вручную, но это долгая и скучная работа.

Запустить ракету

Уже на его предшественнике «Кьюриосити» НАСА применило новый посадочный механизм под названием «небесный кран» (Sky Crane). Это платформа, снабжённая восемью ракетными двигателями. Платформа вместе с марсоходом отделяется от посадочного модуля. За счёт направленных вниз двигателей зависает в нескольких метрах над поверхностью Красной планеты и нежно опускает планетоход при помощи нейлоновых тросов. Затем отлетает в сторону, чтобы не задеть марсоход, отключает двигатели и падает.

ЧИТАТЬ ТАКЖЕ:  Где приобрести аккумуляторы Xiaomi?

Японское аэрокосмическое агентство (JAXA) называет своё детище ракетой-роботом. Для пуска «Эпсилона» требуется всего восемь человек, в то время как для запуска ракет предыдущего поколения нужно было не менее 150 высококвалифицированных сотрудников. Время сборки на стартовой площадке сократилось до одной недели.

В перспективе такой метод позволит легко находить запасы замёрзшей воды на Марсе по орбитальным снимкам. Это поможет будущим марсианским экспедициям подобрать подходящее место для посадки пилотируемых станций. Колонистам не придётся везти запасы воды с собой — её можно будет добывать на планете. Где есть вода, там возможна и жизнь.

Ирония в том, что ракетная техника, считающаяся одной из передовых, до сих пор использует методы, разработанные во времена первых космических полётов. Долгое время конструкторы бились, чтобы увеличить грузоподъёмность и топливную экономичность, но не спешили внедрять современные компьютерные технологии. Многие ракеты-носители до сих пор полагаются на проверенные временем технические решения 1960-х годов.

Есть способ лучше: совместить снимки Марса с картой скоплений льда, полученной учёными НАСА при исследовании разницы температур. На этих данных нейронную сеть можно относительно легко обучить. После этого в неё уже можно загружать новые изображения марсианского грунта, о котором неизвестно, есть ли под ним лёд. И сеть будет выдавать ответ с высокой точностью.

Один из разработчиков ракеты, профессор Ясухиро Морита, в интервью рассказал о системе управления соплом двигателя. Её работа зависит от электрических сигналов, получаемых от множества датчиков. Отклонение сопла может привести к тому, что ракета собьётся с курса. Искусственный интеллект «Эпсилон» контролирует показания датчиков, чтобы убедиться в работоспособности системы управления, а также калибрует её действия под реальные показания приборов до старта ракеты.

Автоматическая посадка исследовательского зонда на Марс — задача необычайно сложная. И статистика подтверждает это: примерно 60% миссий, отправленных человечеством к Красной планете, завершились неудачно. Проблема заключается в том, что из-за огромного расстояния радиосигнал добирается до нашей планеты со значительным запаздыванием: от трёх до двадцати четырёх минут. Поэтому спуск аппарата невозможно контролировать с Земли.

Несмотря на небольшие размеры, «Эпсилон» — отличная модель использования Data Science в ракетостроении. Решения, аналогичные применённым в японской разработке, могут использоваться при создании новых образцов космических носителей с большой грузоподъёмностью. Например, в ракетах Falcon компании SpaceX или в нашей «Ангаре». Пока в этом плане они уступают «Эпсилону» и полагаются на ручной труд обслуживающего персонала.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь